Continuous time-reversal

February 28, 2023

Let $\left(\mathbf{B}_{t}\right)_{t \in[0, T]}$ a d-dimensional Brownian motion associated with the filtration $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$. We define the process $\left(\mathbf{X}_{t}\right)_{t \in[0, T]}$ such that for any $t \in[0, T]$

$$
\mathbf{X}_{t}=\mathbf{X}_{0}+\int_{0}^{t} b\left(s, \mathbf{X}_{s}\right) \mathrm{d} s+\mathbf{B}_{t} .
$$

In short, we write $\mathrm{d} \mathbf{X}_{t}=b\left(t, \mathbf{X}_{t}\right) \mathrm{d} t+\mathrm{d} \mathbf{B}_{t}$. We assume that $b \in \mathrm{C}^{\infty}\left(\mathbb{R} \times \mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and is bounded. The goal of this exercise is to show the time-reversal formula in continuous-time. More precisely, define $\left(\mathbf{Y}_{t}\right)_{t \in[0, T]}=\left(\mathbf{X}_{T-t}\right)_{t \in[0, T]}$. We are going to show that

$$
\begin{equation*}
\mathrm{d} \mathbf{Y}_{t}=\left\{-b\left(T-t, \mathbf{Y}_{t}\right)+\nabla \log p_{T-t}\left(\mathbf{Y}_{t}\right)\right\} \mathrm{d} t+\mathrm{d} \mathbf{B}_{t} . \tag{1}
\end{equation*}
$$

In particular, we are going to show that for any $f \in \mathrm{C}_{c}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right),\left(\mathbf{M}_{t}^{f}\right)_{t \in[0, T]}$ is a $\left(\mathbf{Y}_{t}\right)_{t \in[0, T]}$-martingale where for any $t \in[0, T]$

$$
\mathbf{M}_{t}^{f}=f\left(\mathbf{Y}_{t}\right)-f\left(\mathbf{Y}_{0}\right)-\int_{0}^{t}\left\{\left\langle-b\left(T-s, \mathbf{Y}_{s}\right)+\nabla \log p_{T-s}\left(\mathbf{Y}_{s}\right), \nabla f\left(\mathbf{Y}_{s}\right)\right\rangle+\frac{1}{2} \Delta f\left(\mathbf{Y}_{s}\right)\right\} \mathrm{d} s,
$$

where p_{t} is the density of the distribution of \mathbf{X}_{t} (w.r.t. the Lebesgue measure) which is assumed to exist. We recall that $\left(\mathbf{M}_{t}^{f}\right)_{t \in[0, T]}$ is a $\left(\mathbf{Y}_{t}\right)_{t \in[0, T]}$-martingale if

1. Finite expectation: for any $t \in[0, T], \mathbb{E}\left[\left\|\mathbf{M}_{t}^{f}\right\|\right]<+\infty$,
2. Conditional expectation ${ }^{1}$ for any $s, t \in[0, T]$ with $s \leq t, \mathbb{E}\left[\mathbf{M}_{t}^{f} \mid \mathbf{Y}_{s}\right]=\mathbf{M}_{s}^{f}$

The fact that $\left(\mathbf{M}_{t}^{f}\right)_{t \in[0, T]}$ is a $\left(\mathbf{Y}_{t}\right)_{t \in[0, T]}$-martingale is equivalent to the fact that $\left(\mathbf{Y}_{t}\right)_{t \in[0, T]}$ is a weak solution to (1).

Remark: in what follows we assume that $(t, x) \mapsto\left\|\nabla \log p_{t}(x)\right\|$ has at most linear growth ${ }^{2}$ and $(t, x) \mapsto p_{t}(x) \in \mathrm{C}^{\infty}\left([0, T] \times \mathbb{R}^{d}, \mathbb{R}\right)$. In addition, we assume that $s, t, x_{s}, x_{t} \mapsto p_{t \mid s}\left(x_{t} \mid x_{s}\right) \in$ $\mathrm{C}^{\infty}\left(\mathrm{A} \times \mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ and is bounded, where $\mathrm{A}=\{(s, t): s, t \in[0, T], t \geq s\}$. In addition, we have assume that for any $s, t \in \mathrm{~A}$ and $x_{t} \in \mathbb{R}^{d}, x_{s} \mapsto\left\|\nabla_{x_{s}} \log p_{t \mid s}\left(x_{t} \mid x_{s}\right)\right\|$ has at most linear growth.

We recall the Itô formula. For any $\varphi \in \mathrm{C}^{\infty}\left([0, T] \times \mathbb{R}^{d}, \mathbb{R}\right)$ such that $\|\nabla \log \varphi\|$ has linear growth we have for any $t, s \in[0, T]$

$$
\mathbb{E}\left[\varphi\left(t, \mathbf{X}_{t}\right)-\varphi\left(s, \mathbf{X}_{s}\right) \mid \mathbf{X}_{s}\right]=\mathbb{E}\left[\left.\int_{s}^{t}\left\{\partial_{u} \varphi\left(u, \mathbf{X}_{u}\right)+\left\langle b\left(u, \mathbf{X}_{u}\right), \nabla \varphi\left(u, \mathbf{X}_{u}\right)\right\rangle+\frac{1}{2} \Delta \varphi\left(u, \mathbf{X}_{u}\right)\right\} \mathrm{d} u \right\rvert\, \mathbf{X}_{s}\right] .
$$

[^0]We also recall the following result. For any $F \in \mathrm{C}_{c}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and $g \in \mathrm{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right)$

$$
\int_{\mathbb{R}^{d}}\langle F(x), \nabla g(x)\rangle \mathrm{d} x=-\int_{\mathbb{R}^{d}} g(x) \operatorname{div}(g)(x) \mathrm{d} x .
$$

We denote by $\mathrm{C}_{c}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right)$, the set of infinitely differentiable continuous functions on \mathbb{R}^{d} with compact support.

Question 1: Prove that $t \in[0, T], \mathbb{E}\left[\left\|\mathbf{M}_{t}^{f}\right\|\right]<+\infty$.
Question 2: Prove that $\left(\mathbf{M}_{t}^{f}\right)_{t \in[0, T]}$ is a $\left(\mathbf{Y}_{t}\right)_{t \in[0, T]}$-martingale if and only for any $g \in \mathrm{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ and $t, s \in[0, T]$ with $t \geq s$

$$
\mathbb{E}\left[\left(\mathbf{M}_{t}^{f}-\mathbf{M}_{s}^{f}\right) g\left(\mathbf{Y}_{s}\right)\right]=0
$$

Question 3: Prove that $\left(\mathbf{M}_{t}^{f}\right)_{t \in[0, T]}$ is a $\left(\mathbf{Y}_{t}\right)_{t \in[0, T]}$-martingale if and only for any $g \in \mathrm{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ and $t, s \in[0, T]$ with $t \geq s$

$$
\mathbb{E}\left[g\left(\mathbf{X}_{t}\right) f\left(\mathbf{X}_{t}\right)-g\left(\mathbf{X}_{t}\right) f\left(\mathbf{X}_{s}\right)\right]=\mathbb{E}\left[g\left(\mathbf{X}_{t}\right) \int_{s}^{t}\left\{\left\langle b\left(u, \mathbf{X}_{u}\right)-\nabla \log p_{u}\left(\mathbf{X}_{u}\right), \nabla f\left(\mathbf{X}_{u}\right)\right\rangle-\frac{1}{2} \Delta f\left(\mathbf{X}_{u}\right)\right\} \mathrm{d} u\right] .
$$

For any $g \in \mathrm{C}_{c}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ and $t \in[0, T]$, denote $h^{g, t}:[0, t] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ given for any $s \in[0, t]$ and $x \in \mathbb{R}^{d}$ by

$$
h^{g, t}(s, x)=\mathbb{E}\left[g\left(\mathbf{X}_{t}\right) \mid \mathbf{X}_{s}=x\right] .
$$

In what follows, we fix $t \in[0, T]$ and $g \in \mathrm{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.
Question 4: Show that $h^{g, t} \in \mathrm{C}^{\infty}\left([0, t] \times \mathbb{R}^{d}, \mathbb{R}\right)$.
Question 5: Show that for any $u, s \in[0, t]$ with $u \geq s$ and $\Psi \in \mathrm{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\mathbb{E}\left[\Psi\left(\mathbf{X}_{s}\right)\left\{h^{g, t}\left(u, \mathbf{X}_{u}\right)-h^{g, t}\left(s, \mathbf{X}_{s}\right)-\int_{s}^{u}\left\{\partial_{w} h^{g, t}\left(w, \mathbf{X}_{w}\right)+\left\langle b\left(w, \mathbf{X}_{w}\right), \nabla h^{g, t}\left(w, \mathbf{X}_{w}\right)\right\rangle+\frac{1}{2} \Delta h^{g, t}\left(w, \mathbf{X}_{w}\right)\right\} \mathrm{d} w\right\}\right]=0
$$

Question 6: Show that for any $s \in[0, t]$ and $x \in \mathbb{R}^{d}, \partial_{s} h^{g, t}(s, x)+\left\langle b(s, x), \nabla h^{t, g}(s, x)\right\rangle+$ $\frac{1}{2} \Delta h^{g, t}(s, x)=0$.

Question 7: Show that
$\mathbb{E}\left[g\left(\mathbf{X}_{t}\right) f\left(\mathbf{X}_{t}\right)-g\left(\mathbf{X}_{t}\right) f\left(\mathbf{X}_{s}\right)\right]=\mathbb{E}\left[\int_{s}^{t}\left\{f\left(\mathbf{X}_{u}\right) \partial_{u} h^{g, t}\left(u, \mathbf{X}_{u}\right)+\left\langle b\left(u, \mathbf{X}_{u}\right), \nabla\left(h^{g, t}(u, \cdot) f\right)\left(\mathbf{X}_{u}\right)+\frac{1}{2} \Delta\left(h^{g, t}(u, \cdot) f\right)\right\} \mathrm{d} u\right]\right.$.
Question 8: Show that
$\mathbb{E}\left[g\left(\mathbf{X}_{t}\right) f\left(\mathbf{X}_{t}\right)-g\left(\mathbf{X}_{t}\right) f\left(\mathbf{X}_{s}\right)\right]=\mathbb{E}\left[\int_{s}^{t}\left\{h^{g, t}(u, \cdot)\left\langle b\left(u, \mathbf{X}_{u}\right), \nabla f\left(\mathbf{X}_{u}\right)\right\rangle+h^{g, t}\left(u, \mathbf{X}_{u}\right) \frac{1}{2} \Delta f\left(\mathbf{X}_{u}\right)+\left\langle\nabla f\left(\mathbf{X}_{u}\right), \nabla h^{g, t}\left(u, \mathbf{X}_{u}\right)\right\rangle\right\} \dot{c}\right.$
Question 9: Show that
$\mathbb{E}\left[\int_{s}^{t}\left\langle\nabla f\left(\mathbf{X}_{u}\right), \nabla h^{g, t}\left(u, \mathbf{X}_{u}\right)\right\rangle \mathrm{d} u\right]=-\mathbb{E}\left[\int_{s}^{t}\left\{\Delta f\left(\mathbf{X}_{u}\right)+\left\langle\nabla \log p_{u}\left(\mathbf{X}_{u}\right), \nabla f\left(\mathbf{X}_{u}\right)\right\rangle h^{g, t}\left(u, \mathbf{X}_{u}\right) \mathrm{d} u\right]\right.$.
Question 10: Conclude the proof.

[^0]: ${ }^{1}$ Here I have assumed without proof that $\left(\mathbf{Y}_{t}\right)_{t \in[0, T]}$ is Markov
 ${ }^{2}$ A function $f:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is said to have linear growth if there exists $C \geq 0$ such that for any $t \in[0, T]$ and $x \in \mathbb{R}^{d},\|f(t, x)\| \leq C(1+\|x\|)$.

