Continuous time-reversal

February 28, 2023

Let $(\mathbf{B}_t)_{t\in[0,T]}$ a *d*-dimensional Brownian motion associated with the filtration $(\mathcal{F}_t)_{t\in[0,T]}$. We define the process $(\mathbf{X}_t)_{t\in[0,T]}$ such that for any $t\in[0,T]$

$$\mathbf{X}_t = \mathbf{X}_0 + \int_0^t b(s, \mathbf{X}_s) \mathrm{d}s + \mathbf{B}_t$$

In short, we write $d\mathbf{X}_t = b(t, \mathbf{X}_t)dt + d\mathbf{B}_t$. We assume that $b \in C^{\infty}(\mathbb{R} \times \mathbb{R}^d, \mathbb{R}^d)$ and is bounded. The goal of this exercise is to show the *time-reversal* formula in continuous-time. More precisely, define $(\mathbf{Y}_t)_{t \in [0,T]} = (\mathbf{X}_{T-t})_{t \in [0,T]}$. We are going to show that

$$d\mathbf{Y}_t = \{-b(T-t, \mathbf{Y}_t) + \nabla \log p_{T-t}(\mathbf{Y}_t)\}dt + d\mathbf{B}_t.$$
(1)

In particular, we are going to show that for any $f \in C_c^{\infty}(\mathbb{R}^d, \mathbb{R})$, $(\mathbf{M}_t^f)_{t \in [0,T]}$ is a $(\mathbf{Y}_t)_{t \in [0,T]}$ -martingale where for any $t \in [0,T]$

$$\mathbf{M}_t^f = f(\mathbf{Y}_t) - f(\mathbf{Y}_0) - \int_0^t \{ \langle -b(T-s, \mathbf{Y}_s) + \nabla \log p_{T-s}(\mathbf{Y}_s), \nabla f(\mathbf{Y}_s) \rangle + \frac{1}{2} \Delta f(\mathbf{Y}_s) \} \mathrm{d}s,$$

where p_t is the density of the distribution of \mathbf{X}_t (w.r.t. the Lebesgue measure) which is assumed to exist. We recall that $(\mathbf{M}_t^f)_{t \in [0,T]}$ is a $(\mathbf{Y}_t)_{t \in [0,T]}$ -martingale if

- 1. Finite expectation: for any $t \in [0, T]$, $\mathbb{E}[\|\mathbf{M}_t^f\|] < +\infty$,
- 2. Conditional expectation¹: for any $s, t \in [0, T]$ with $s \leq t$, $\mathbb{E}[\mathbf{M}_t^f | \mathbf{Y}_s] = \mathbf{M}_s^f$

The fact that $(\mathbf{M}_t^f)_{t \in [0,T]}$ is a $(\mathbf{Y}_t)_{t \in [0,T]}$ -martingale is equivalent to the fact that $(\mathbf{Y}_t)_{t \in [0,T]}$ is a *weak solution* to (1).

Remark: in what follows we assume that $(t, x) \mapsto \|\nabla \log p_t(x)\|$ has at most linear growth² and $(t, x) \mapsto p_t(x) \in C^{\infty}([0, T] \times \mathbb{R}^d, \mathbb{R})$. In addition, we assume that $s, t, x_s, x_t \mapsto p_{t|s}(x_t|x_s) \in C^{\infty}(\mathsf{A} \times \mathbb{R}^d \times \mathbb{R}^d)$ and is bounded, where $\mathsf{A} = \{(s, t) : s, t \in [0, T], t \ge s\}$. In addition, we have assume that for any $s, t \in \mathsf{A}$ and $x_t \in \mathbb{R}^d, x_s \mapsto \|\nabla_{x_s} \log p_{t|s}(x_t|x_s)\|$ has at most linear growth.

We recall the Itô formula. For any $\varphi \in C^{\infty}([0,T] \times \mathbb{R}^d, \mathbb{R})$ such that $\|\nabla \log \varphi\|$ has linear growth we have for any $t, s \in [0,T]$

$$\mathbb{E}[\varphi(t,\mathbf{X}_t) - \varphi(s,\mathbf{X}_s)|\mathbf{X}_s] = \mathbb{E}[\int_s^t \{\partial_u \varphi(u,\mathbf{X}_u) + \langle b(u,\mathbf{X}_u), \nabla \varphi(u,\mathbf{X}_u) \rangle + \frac{1}{2}\Delta \varphi(u,\mathbf{X}_u)\} du | \mathbf{X}_s].$$

¹Here I have assumed without proof that $(\mathbf{Y}_t)_{t \in [0,T]}$ is Markov

²A function $f: [0,T] \times \mathbb{R}^d \to \mathbb{R}$ is said to have linear growth if there exists $C \ge 0$ such that for any $t \in [0,T]$ and $x \in \mathbb{R}^d$, $||f(t,x)|| \le C(1+||x||)$.

We also recall the following result. For any $F \in C_c^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$ and $g \in C^{\infty}(\mathbb{R}^d, \mathbb{R})$

$$\int_{\mathbb{R}^d} \langle F(x), \nabla g(x) \rangle \mathrm{d}x = -\int_{\mathbb{R}^d} g(x) \mathrm{div}(g)(x) \mathrm{d}x.$$

We denote by $C_c^{\infty}(\mathbb{R}^d,\mathbb{R})$, the set of infinitely differentiable continuous functions on \mathbb{R}^d with compact support.

Question 1: Prove that $t \in [0, T]$, $\mathbb{E}[||\mathbf{M}_t^f||] < +\infty$.

Question 2: Prove that $(\mathbf{M}_t^f)_{t \in [0,T]}$ is a $(\mathbf{Y}_t)_{t \in [0,T]}$ -martingale if and only for any $g \in C^{\infty}(\mathbb{R}^d, \mathbb{R})$ and $t, s \in [0, T]$ with $t \ge s$

$$\mathbb{E}[(\mathbf{M}_t^f - \mathbf{M}_s^f)g(\mathbf{Y}_s)] = 0$$

Question 3: Prove that $(\mathbf{M}_t^f)_{t \in [0,T]}$ is a $(\mathbf{Y}_t)_{t \in [0,T]}$ -martingale if and only for any $g \in C^{\infty}(\mathbb{R}^d, \mathbb{R})$ and $t, s \in [0, T]$ with $t \ge s$

$$\mathbb{E}[g(\mathbf{X}_t)f(\mathbf{X}_t) - g(\mathbf{X}_t)f(\mathbf{X}_s)] = \mathbb{E}[g(\mathbf{X}_t)\int_s^t \{\langle b(u, \mathbf{X}_u) - \nabla \log p_u(\mathbf{X}_u), \nabla f(\mathbf{X}_u) \rangle - \frac{1}{2}\Delta f(\mathbf{X}_u)\} \mathrm{d}u].$$

For any $g \in C_c^{\infty}(\mathbb{R}^d, \mathbb{R})$ and $t \in [0, T]$, denote $h^{g,t}: [0, t] \times \mathbb{R}^d \to \mathbb{R}$ given for any $s \in [0, t]$ and $x \in \mathbb{R}^d$ by

$$h^{g,t}(s,x) = \mathbb{E}[g(\mathbf{X}_t)|\mathbf{X}_s = x].$$

In what follows, we fix $t \in [0, T]$ and $g \in C_c^{\infty}(\mathbb{R}^d)$. Question 4: Show that $h^{g,t} \in C^{\infty}([0, t] \times \mathbb{R}^d, \mathbb{R})$.

Question 5: Show that for any $u, s \in [0, t]$ with $u \ge s$ and $\Psi \in C_c^{\infty}(\mathbb{R}^d)$

 $\mathbb{E}[\Psi(\mathbf{X}_s)\{h^{g,t}(u,\mathbf{X}_u)-h^{g,t}(s,\mathbf{X}_s)-\int_s^u\{\partial_w h^{g,t}(w,\mathbf{X}_w)+\langle b(w,\mathbf{X}_w),\nabla h^{g,t}(w,\mathbf{X}_w)\rangle+\frac{1}{2}\Delta h^{g,t}(w,\mathbf{X}_w)\}\mathrm{d}w\}]=0$

Question 6: Show that for any $s \in [0,t]$ and $x \in \mathbb{R}^d$, $\partial_s h^{g,t}(s,x) + \langle b(s,x), \nabla h^{t,g}(s,x) \rangle +$ $\frac{1}{2}\Delta h^{g,t}(s,x) = 0.$

Question 7: Show that

$$\mathbb{E}[g(\mathbf{X}_t)f(\mathbf{X}_t) - g(\mathbf{X}_t)f(\mathbf{X}_s)] = \mathbb{E}[\int_s^t \{f(\mathbf{X}_u)\partial_u h^{g,t}(u, \mathbf{X}_u) + \langle b(u, \mathbf{X}_u), \nabla(h^{g,t}(u, \cdot)f)(\mathbf{X}_u) + \frac{1}{2}\Delta(h^{g,t}(u, \cdot)f)\} du].$$

Question 8: Show that

$$\mathbb{E}[g(\mathbf{X}_t)f(\mathbf{X}_t) - g(\mathbf{X}_t)f(\mathbf{X}_s)] = \mathbb{E}[\int_s^t \{h^{g,t}(u,\cdot)\langle b(u,\mathbf{X}_u), \nabla f(\mathbf{X}_u)\rangle + h^{g,t}(u,\mathbf{X}_u)\frac{1}{2}\Delta f(\mathbf{X}_u) + \langle \nabla f(\mathbf{X}_u), \nabla h^{g,t}(u,\mathbf{X}_u)\rangle \}$$

Question 9: Show that

$$\mathbb{E}[\int_{s}^{t} \langle \nabla f(\mathbf{X}_{u}), \nabla h^{g,t}(u, \mathbf{X}_{u}) \rangle \mathrm{d}u] = -\mathbb{E}[\int_{s}^{t} \{\Delta f(\mathbf{X}_{u}) + \langle \nabla \log p_{u}(\mathbf{X}_{u}), \nabla f(\mathbf{X}_{u}) \rangle h^{g,t}(u, \mathbf{X}_{u}) \mathrm{d}u] = -\mathbb{E}[\int_{s}^{t} \{\Delta f(\mathbf{X}_{u}) + \langle \nabla \log p_{u}(\mathbf{X}_{u}), \nabla f(\mathbf{X}_{u}) \rangle h^{g,t}(u, \mathbf{X}_{u}) \mathrm{d}u] = -\mathbb{E}[\int_{s}^{t} \{\Delta f(\mathbf{X}_{u}) + \langle \nabla \log p_{u}(\mathbf{X}_{u}), \nabla f(\mathbf{X}_{u}) \rangle h^{g,t}(u, \mathbf{X}_{u}) \mathrm{d}u]$$

Question 10: Conclude the proof.