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Outline of the course (1/2)

Course 1: Introduction to generative modeling

I Motivation of generative modeling.
I Basics on EBMs, normalizing �ows, VAEs and GANs.

Course 2: Score-based generative modeling (introduction & practice)

I Introduction of di�usion models.
I Connection with ancestral sampling.
I A variational approach.
I Lab session: MNIST with score-based generative models.

Course 3: Score-based generative modeling (theory & methodology)

I Stochastic processes and time-reversal.
I Di�usion models as maximum likelihood models.
I Some extensions of score-based generative models.
I Exercise session: likelihood computation with score-based generative

models.
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Outline of the course (2/2)

Course 4: Towards Schrödinger bridges

I Beyond score-based generative models.
I The dynamical Schrödinger Bridge problem.
I Iterative Proportional Fitting.
I Di�usion Schrödinger Bridge.
I Exercise session: Regularized Optimal Transport and Schrödinger

Bridges.

Course 5: Schrödinger Bridges in practice

I Back to Di�usion Schrödinger Bridges.
I A network re�nement.
I Links with stochastic control.
I Likelihood computation with Di�usion Schrödinger Bridges.
I Lab session: MNIST with Di�usion Schrödinger Bridges.
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Introduction to generative
modeling



De�nition
Generative modeling: Given a distribution π ∈ P(Rd) how to obtain
sample from π?
I We have access to π̂ = (1/N )

∑N
k=1 δxk , the empirical distribution.

I {xk}Nk=1 are samples from π

A general approach:
I Start from an easy-to-sample distribution π0 ∈ P(Rp) (p can be

di�erent from d).
I Choose a noise distribution πZ on a space (Z,Z).
I De�ne a mapping g : Rp × Z→ Rd such that g#(π0, πZ) ≈ π.

In other words:
I Sample Z from πZ, sample X0 from π0

I Push with g(X0,Z)→ approximate sample from π.

Figure 1: Image adapted from Ruthotto and Haber (2021).
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Application (1/3): Data augmentation

Application in medical imaging: Sandfort et al. (2019).
I Computerized Tomography (CT) scans are expensive to generate.
I Training data: contrast-enhanced CT scans.
I Testing data (real-world data): non-contrast CT scans (distribution

shift).
Sandfort et al. (2019) consider a GAN (CycleGAN) to generate non-contrast CT
scans from contrast-enhanced CT scans. This is called data augmentation.

Figure 2: Image extracted from Sandfort et al. (2019).
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Application (2/3): Nowcasting

Application in meteorology: Ravuri et al. (2021).

I Prediction of rain in the next 2 hours: nowcasting.
I Solving physical PDEs: planet scale predictions days ahead.
I Struggle for high resolution predictions on short time ranges.

Access to a lot of high quality data: conditional GAN.

Figure 3: Image extracted from Ravuri et al. (2021).
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Application (3/3): Protein Folding

Application in computational biology: Senior et al. (2020).
I Amino-acid sequence to 3D structure.
I Cryo-Electron Microscopy or crystallography = experimental techniques

to determine the shape of the protein.
I Crystallizing a protein is a real challenge Avanzato et al. (2019).
I Competition to predict structure: Critical Assessment of protein

Structure Prediction.
Conditional generative modeling.

Figure 4: Image extracted from Senior et al. (2020).
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Large dataset and training

Example-based synthesis

Access to only one example.

Modeling of the density:

I Maximum entropy.
I Feature matching and

invariance.

Estimation of parameters and
sampling:

I Stochastic Optimization with
Unadjusted Langevin.

Figure 5: Image extracted from
Brochard et al. (2020).

Generative modeling

Access to many examples.

Modeling of the density:

I Energy-based models.
I Normalizing �ows.
I Variational Autoencoders.
I Generative Adversarial

Networks.

Training of a neural network.

Figure 6: Image extracted from
Dhariwal and Nichol (2021). 9 / 75



Di�erence with statistical sampling

Generative Modeling: sampling of target distribution π and we have access
to π̂ = (1/N )

∑N
k=1 δxk , the empirical distribution.

Di�erent setting than statistical sampling.

I Sampling from π with density (w.r.t. the Lebesgue measure on Rd )
proportional to x 7→ exp[−U (x)].

I U : Rd → R is called a potential.
I Classical methods: Monte Carlo Markov Chains Roberts et al. (1996);

Durmus et al. (2017); Dalalyan (2017).
I Applications in statistical physics and Bayesian statistics, see e.g. Neal

(1992).

Interaction between statistical sampling and generative modeling:

I Modi�cation of GAN losses to design e�cient Markov kernels with
given invariant measure (Song et al. (2017)).

I Use of Metropolis-Hastings rejection and discriminator step to improve
generative modeling with GAN (Turner et al. (2019))
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Outline of the course

Goal of the course:
I Introduce modern methods of generative modeling.
I Present their strengths and limitations.

Outline of the course:
I Energy-based models (EBMs).
I Variational Autoencoders (VAEs).
I Normalizing �ows.
I Generative Adversarial Networks (GANs).

Figure 7: Image extracted from Dhariwal and Nichol (2021).
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Energy-based models



Principles of EBMs

Assume that π (the data distribution) is modelled by a parametric
distribution πθ such that for any x ∈ Rd

pθ(x) = (dπθ/dLeb)(x) = exp[−fθ(x) + L(θ)] ,

L(θ) = − log(
∫
Rd exp[−fθ(x̃)]dx̃) .

fθ is a neural network (θ ∈ Θ is a set of parameters).

Maximizing the likelihood

ˆ̀(θ) = π̂[log(pθ)] = −(1/N )
∑N

k=1 fθ(x
k) + L(θ) .

ˆ̀ is an empirical version of ` given by

`(θ) = π[log(pθ)] = −KL(π|πθ) + H(π) ,

where H is the entropy of π.

Maximizing the likelihood = Minimizing the Kullback-Leibler divergence.

In what follows:
I Training EBMs.
I Link with maximum entropy approaches.
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Training EBMs
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Training EBMs

Maximizing the likelihood

ˆ̀(θ) = π̂[log(pθ)] = −(1/N )
∑N

k=1 fθ(x
k) + L(θ) .

Taking the gradient of the log-partition

∇θL(θ) =
∫ d
R ∇θfθ(x̃) exp[−fθ(x̃)]dx̃/

∫ d
R exp[−fθ(x̃)]dx̃ = πθ[∇θfθ] .

Taking the gradient of the empirical likelihood ˆ̀

∇θ ˆ̀(θ) = −π̂[∇θfθ] + πθ[∇θfθ] .

Taking the gradient of `,∇θ ˆ̀(θ) = −π[∇θfθ] + πθ[∇θfθ]:

I ˆ̀ is the empirical version of `.
I At equilibrium θ?, we cannot distinguish the expectation of∇θfθ?

w.r.t. π and πθ? .
I Approximating πθ[∇θfθ], requires statistical sampling.
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MCMCmethods for training

Taking the gradient of the empirical likelihood ˆ̀

∇θ ˆ̀(θ) = −π̂[∇θfθ] + πθ[∇θfθ] .

The loss ˆ̀ is called the contrastive divergence.

Computing πθ[∇θfθ]:
I Markov chains targeting (approximately) πθ .
I Unadjusted Langevin Algorithm

Xk+1 = Xk − γ∇x fθ(Xk) +
√

2γZk+1 ,

I γ is a stepsize,∇x fθ is computed with backpropagation.
In practice:
I We add some regularization to the contrastive divergence.
I We consider short runs of MCMC.
I The initialization of the MCMC is important: warm-start (persistent

contrastive divergence, see Tieleman (2008)) or not (see Nijkamp et al.
(2019)).

I Tutorial with Pytorch implementation based on Du and Mordatch (2019).
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EBM training algorithm

Algorithm 1 Training of EBM
1: Input: niter, K , π̂, Nbatch, γ, δ, α, θ0.
2: B 6= ∅.
3: for n = 0 to niter − 1 do
4: Sample X+,1:Nbatch

n = {X+,k
n }Nbatch

k=1 i.i.d. from π̂.
5: if B is not empty then
6: Sample X 0,1:Nbatch

n = {X 0,k
n }Nbatch

k=1 i.i.d. from (1− α)B + αN(0, Id).
7: else
8: Sample X 0,1:Nbatch

n = {X 0,k
n }Nbatch

k=1 i.i.d. from N(0, Id).
9: end if

10: for k = 0 to K − 1 do
11: X k+1,1:Nbatch

n = X k,1:Nbatch
n + γ∇x fθn(X

k,1:Nbatch
n ) +

√
2γZk+1,1:Nbatch

n .
12: end for
13: X−,1:Nbatch

n = XK,1:Nbatch
n .

14: θn+1 = θn + (δ/Nbatch)
∑Nbatch
`=1 {∇θfθn(X

+,`
n )−∇θfθn(X−,`n )}.

15: B = X−,1:Nbatch
n .

16: end for
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Example-based synthesis
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Link with example-based synthesis

Di�erent density models:

I In Energy-Based Models: pθ(x) = exp[−fθ(x) + L(θ)].
I In Maximum Entropy Models:

pθ(x) = exp[−〈θ, f (x)− f (x0)〉+ L(θ)].

Training losses:

I In Energy-Based Models: ∇θ ˆ̀(θ) = −π̂[∇θfθ] + πθ[∇θfθ].
I In Maximum Entropy Models: ∇θL(θ) = −〈θ, f (x0)〉+ πθ[∇θfθ].

Some key di�erences

I π̂ is replaced by δx0 . Only one example to train the model.
I In EBMs we train a neural network, in Maximum Entropy Models the

dependency w.r.t. the parameters is linear.
I More �exibility in EBMs but no (trivial) maximum entropy

interpretation.

Same sampling algorithm.
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Summary of EBMs

Advantages:

I Model the potential directly.
I Usually allows for model with less parameters than VAE, GANs or NFs.
I Compositionality via Product of Experts Hinton (2002).

Problems:

I Training with MCMC is long. This can be avoided if we replace the
Kullback-Leibler objective with a Fisher objective (connection with
score-matching Song and Kingma (2021)).

I Instabilities with training Du and Mordatch (2019).
I Density on Rd . Usually the data is supported on a low dimensional

manifold Arbel et al. (2020).

Links with other methods:

I Connection with GANs Che et al. (2020).
I Connection with VAEs Xiao et al. (2020).
I Connection with score-matching Song and Kingma (2021); Gao et al.

(2020).
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Variational Autoencoders



Di�erences with EBMs

Basics of EBMs:
I We consider an exponential model of the form pθ(x) ∝ exp[−fθ(x)].
I We maximize the log-likelihood `(θ) = π[log pθ].

In Variational AutoEncoders (VAEs):
I We no longer consider an exponential model (pushforward type model).
I We consider a lower-bound to the log-likelihood.
I We introduce a latent space.

Figure 8: Structure of a VAE.

In what follows:
I Introduction of the ELBO.
I Encoding families and reparameterization trick.
I Gaussian case and training.
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Introduction of the ELBO
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From log-likelihood to ELBO (1/2)

Manifold hypothesis: the data distribution is supported on a space
(submanifold) of Rd with much lower dimension than Rd .

I We de�ne a joint model on Rd × Rp and assume that
pθ(x) =

∫
Rp p(z)pθ(x|z)dx.

I The distribution pθ(x|z) decodes the latent vector z.
I p(z) is called the prior distribution (and does not depend on θ).

A marginalization problem.

log(pθ(x)) = log(
∫
Rp p(z)pθ(x|z)dz) .

Computing the gradient.

I ∇θ log(pθ(x)) =
∫
Rp ∇θ log(pθ(x|z))pθ(z|x)dz

I MCMC techniques targeting the posterior x 7→ pθ(z|x).
I This is similar to Maximum Entropy and Energy-Based Models.
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From log-likelihood to ELBO (2/2)

Instead of directly maximizing the log-likelihood we are going to consider a
lower-bound.

log(pθ(x)) = log(
∫
Rp pθ(x|z)p(z)dz)

= log(
∫
Rp pθ(x|z)(p(z)/q(z))q(z)dz)

≥
∫
Rp log(pθ(x|z)p(z)/q(z))q(z)dz

≥
∫
Rp log(pθ(x|z))q(z)dz − KL(q|p) .

Inequality obtained using the concavity of the logarithm.

This last lower-bound is called the ELBO (Evidence Lower BOund) (MacKay
(1992)):

I The �rst term controls the reconstruction.
I The second term controls how close q is to the prior.

The choice of the variational distribution q is crucial
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Expectation-Maximization (EM) Algorithm

Before presenting the VAE setting we recall the basics of the
Expectation-Maximization (EM) algorithm.

We begin with the same ELBO

log(pθ(x)) ≥
∫
Rp log(pθ(x|z))q(z)dz − KL(q|p) .

We consider the following procedure:

I Start with θ = θ0 and choose q = pθ0 (·|x).
I Compute

L0(θ) =
∫
Rp log(pθ(x|z))pθ0 (z|x)dz − KL(pθ0 (·|x)|p)

=
∫
Rp log(pθ(x, z))pθ0 (z|x)dz + H(pθ0 (·|x)) .

I θ1 = arg max{L0(θ) : θ ∈ Θ}.
I Go back to the �rst step.

Computing the expectation might be hard (useful for mixture of Gaussians
models for instance).
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Encoding families and reparameterization
trick
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Encoding variational family

The variational distribution z 7→ pθ(z|x) is optimal.

log(pθ(x))− L(θ) = log(pθ(x))−
∫
Rd log(pθ(x, z)/q(z))q(z)dz

= −
∫
Rd log(pθ(z|x)/q(z))q(z)dz = KL(pθ(·|x)|q) .

Hence choosing the posterior closes the variational gap.

Unfortunately the posterior can be hard to compute.

In VAEs we consider a variational family of distribution z 7→ qφ(z|x) where:

I φ is a parameter of qφ (parametric family).
I qφ transforms a data point into a latent representation.
I The ELBO can be written as follows

L(θ, φ) =
∫
Rp log(pθ(x|z))qφ(z|x)dz − KL(qφ(·|x)|p) .
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Computing the gradient

The ELBO can be written as follows

L(θ, φ) =
∫
Rp log(pθ(x|z))qφ(z|x)dz − KL(qφ(·|x)|p) .

The goal is to optimize jointly w.r.t. θ and φ.

I Taking the gradient w.r.t. θ

∇θL(θ, φ) =
∫
Rp ∇θ log(pθ(x|z))qφ(z|x)dz .

I Taking the gradient w.r.t. φ

∇φL(θ, φ) = −
∫
Rp ∇φ log(qφ(z|x))qφ(z|x)dz

+
∫
Rd log(pθ(x, z)/qφ(z|x))∇φ log(qφ(z|x))qφ(z|x)dz .

I Using Monte Carlo approximations we can approximate these integrals.

With the reparameterization trick (Kingma and Welling (2013)) we will see a
simpler way to compute these quantities.
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Variational families for sampling

Back to the original problem: generative modeling

I We want to maximize the likelihood (Optional)
I We want to sample from the model (Goal).

Recall that pθ(x) =
∫
Rp pθ(x|z)p(z)dz.

I The prior distribution must be simple (Gaussian).
I The decoding distribution must be simple (Gaussian).

Hence, we consider the following parameterizations:

I pθ(x|z) = N(mθ(z),Σ
1/2
θ (z)).

I qφ(z|x) = N(mφ(x),Σ
1/2
φ (x)).

Sampling from the model is easy.

I Sample a Gaussian from p(z) = N(0, Id).
I Sample a Gaussian from pθ(x|z) = N(mθ(z),Σ

1/2
θ (z)).
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Reparameterization trick

Recall the ELBO

L(θ, φ) =
∫
Rp log(pθ(x|z))qφ(z|x)dz − KL(qφ(·|x)|p) .

The reparameterization trick (Kingma and Welling (2013)) consists into
decoupling the randomness and the parameters.
I Sampling from Z ∼ qφ(·|x) obtained with Z = gφ(x, ε) where ε ∼ q.
I q does not depend on any parameter θ or φ.
I In the Gaussian setting Z = mφ(z) + Σ

1/2
φ (z)ε with ε ∼ N(0, Id).

We can rewrite the ELBO as follows

L(θ, φ) =
∫
Rp log(pθ(x|z))qφ(z|x)dz − KL(qφ(·|x)|p)

=
∫
Rp log(pθ(x|gφ(x, ε)))q(ε)dε

−
∫
Rp log(qφ(gφ(x, ε)|x)/p(gφ(x, ε)))q(ε)dε ,

I Change of variable z = gϕ(x, ε).
We can compute the terms inside the integral and di�erentiate them w.r.t. θ
and φ.

Note that the integrals do not depend on the parameters.
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Sticking the landing

Rewriting the ELBO:

L(θ, φ) =
∫
Rp log(pθ(x|z))qφ(z|x)dz − KL(qφ(·|x)|p)

=
∫
Rp{log(pθ(z, x))− log qφ(z|x)}qφ(z|x)dz

=
∫
Rp{log(pθ(gφ(x, ε), x))− log qφ(gφ(x, ε)|x)}q(ε)dε .

Di�erent estimators of the gradient of the ELBO Roeder et al. (2017).

∇φL(θ, φ) =
∫
Rp ∇z{log(pθ(gφ(x, ε), x))− log qφ(gφ(x, ε), x)}∇φgφ(x, ε)q(ε)dε

−
∫
Rp ∇φ log qφ(gφ(x, ε), x)q(ε)dε .

Note that
∫
Rp ∇φ log qφ(gφ(x, ε)|x)q(ε)dε = 0.

{εk}Nk=1 i.i.d. samples from q. Two unbiased estimators (and link with control
variates):
I Path derivative estimator

∇̂PD
φ L(θ, φ) =

∑N
k=1∇z{log(pθ(gφ(x, εk), x))− log qφ(gφ(x, εk)|x)}∇φgφ(x, εk) .

I Total derivative estimator

∇̂TD
φ L(θ, φ) = ∇̂TD

φ L(θ, φ)−
∑N

k=1∇φ log qφ(gφ(x, εk)|x) .
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Gaussian case and training
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Interpretation in the Gaussian case

The ELBO is given by

L(θ, φ) =
∫
Rp log(pθ(x|gφ(x, ε)))q(ε)dε

−
∫
Rp log(qφ(gφ(x, ε)|x)/p(gφ(x, ε)))q(ε)dε .

Recall that in practice, we restrict ourselves to the Gaussian case:

I pθ(x|z) = N(mθ(z),Σ
1/2
θ (z)).

I qφ(z|x) = N(mφ(x),Σ
1/2
φ (x)).

For simplicity assume that Σ
1/2
θ = Σ

1/2
φ = Id.

L(θ, φ) = −(1/2)
∫
Rp ‖x −mθ(mφ(x) + ε)‖2q(ε)dε

−(1/2)
∫
Rp ‖mφ(x) + ε‖2q(ε)dε+ C .

I C is a constant independent of the parameters .
I The �rst term is the reconstruction loss.
I The second term is the regularization term.
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In�uence of loss terms

MNIST reconstruction with VAE (10 digits give 10 classes).

I Minimizing only the reconstruction loss does not yield meaningful
interpolation (sampling is hard).

I Minimizing only the regularization loss does not yield meaningful
encoding.

The latent space is two dimensional here.

Figure 9: Image extracted from an online tutorial.
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Interpolation in the latent space

Contrary to EBMs the sampling is explicit.

By travelling in the latent space we can interpolate in the dataset in a
“meaningful” manner.

Figure 10: Image extracted from an online tutorial.
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VAE training algorithm

Algorithm 2 Training of VAE
1: Input: niter, K , π̂, q, estimator of∇L, Nbatch, δθ , δφ θ0, φ0.
2: for n = 0 to niter − 1 do
3: Sample X 1:Nbatch

n = {X k
n }Nbatch

k=1 i.i.d. from π̂.
4: Z 1:Nbatch

n = {Zk
n}Nbatch

k=1 i.i.d. from q.
5: Compute estimator of the gradient of the ELBO w.r.t. θ, ∇̂θL(θn, φn)

6: Compute estimator of the gradient of the ELBO w.r.t. φ, ∇̂φL(θn, φn)

7: θn+1 = θn + δθ∇̂θL(θn, φn)

8: φn+1 = φn + δφ∇̂φL(θn, φn)

9: end for

Di�erent choices of estimators (path derivative, total derivative).

Stochastic gradient descent can be replaced by other algorithms (such as
ADAM Kingma and Ba (2014)).
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Summary of VAEs

Vanilla autoencoders consist in the reconstruction loss only.

Variational autoencoders are better generative models.

Advantages:

I VAEs are easy to train with clear estimators of the ELBO.
I They provide interesting latent representations.

Problems:

I VAEs with Gaussian priors are not competitive in generative modeling.
I The choice of the latent space dimension is arbitrary.
I The choice of the prior is arbitrary.

Links with other methods

I VAE can be combined with normalizing �ows Kingma et al. (2016);
Vahdat and Kautz (2020).

I Score-based generative models can be seen as autoencoders Huang et al.
(2021); Dieleman (2022); Ho et al. (2020).
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Normalizing �ows



Principles of normalizing �ows

Normalizing �ows can be seen as reparameterization trick.
We still aim at maximizing the likelihood log(pθ(x)), where pθ is our model.
I Model pθ �exible enough to approximate the data distribution.
I Sampling from pθ must be easy.

The principles of normalizing �ows:
I Start from a distribution π0 with density p which is easy to sample.
I De�ne πθ = (gθ)#π0 and its density pθ .
I Maximize the log-likelihood log(pθ(x)).

Figure 11: Several transformations of a N(0, Id) density. Image extracted
from Rezende and Mohamed (2015).

In what follows:
I First normalizing �ows and GLOW.
I Autoregressive models and IAFVAE.
I Continuous Normalizing Flows.
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First normalizing �ows and GLOW
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Invertible transformations

The density of (gθ)#π0 is given by a change of variable.

I We assume that gθ is a di�eomorphism (not necessary, one can use the
co-area/area formula Caterini et al. (2021)).

I Using the d-dimensional change of variable we have for any
f ∈ Cc(Rd ,R)

E[f (X)] = E[f (gθ(Z))] =
∫
Rd f (x)p(g−1

θ (x))|Jθ(g−1
θ (x))|dz .

I Hence, maximizing the log-likelihood is equivalent to maximizing

`(θ) = log(p(g−1
θ (x))) + log(|Jθ(g−1

θ (x))|) .

Composition of transformation: gθ = g0
θ ◦ g1

θ ◦ · · · ◦ gKθ .

Conditions on the transformations:

I gθ and g−1
θ are easy to compute and di�erentiate.

I The Jacobian Jθ is easy to compute and di�erentiate.
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Di�erent types of �ows

In Rezende and Mohamed (2015) planar and radial �ows are presented.

Two other very e�cient �ows Dinh et al. (2016, 2014):

I A�ne coupling layer.
I Invertible 1x1 convolution.

How does the a�ne coupling layer work?

I We split x ∈ Rd in x = (x0, x1) with x0 ∈ Rd0 , x1 ∈ Rd1 .
I Forward transform gθ(x) = (x0, exp[sθ(x0)]� x1 + tθ(x0)).
I Reverse transform g−1

θ (x) = (x0, (x1 − tθ(x0)) � exp[sθ(x0)]).
I Log-Jacobian: log(|Jθ(x)|) =

∑d1
i=1 sθ(x0)i .

How does the invertible 1x1 convolution work?

I Matrix Wθ ∈ RC×C (number of channels), x ∈ RH×W×C .
I Forward transform gθ(x)i,j = Wθxi,j .
I Reverse transform g−1

θ (x)i,j = W−1
θ xi,j .

I Log-Jacobian log(|Jθ(x)|) = H ×W × log(|Wθ|).
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Generative Flow (GLOW)

Results obtained by Kingma and Dhariwal (2018).

Combining actnorm,
invertible convolution and
a�ne coupling layers
(multiple times).

The “actnorm” layer is
simply an a�ne layer.

High quality results and
interpolation. Figure 12: One step of GLOW. Image extracted

from Kingma and Dhariwal (2018).

Figure 13: GLOW results. Image extracted from Kingma and Dhariwal (2018).
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Autoregressive models and IAFVAE
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A detour by autoregressive models

Another generative modeling approach: autoregressive models

I Masked Autoencoder for Distribution Estimation (autoregressive
autoencoder), Germain et al. (2015).

I PixelRNN (autoregressive LSTM), Van Oord et al. (2016).
I Both models are trained by maximizing the log-likelihood.

Both models assume the following
raster-scan decomposition.

pθ(x) =
∏d

i=1 pθ(xi|x1:i−1) .

Problems:

I As many predicitions as the
dimension.

I Can be parallelized for training
but not for sampling.

Figure 14: Raster scan order. Image
extracted from Van Oord et al. (2016).

43 / 75



The autoregressive layer

These ideas can however be reapplied to de�ne a normalizing �ow layer.

Kingma et al. (2016) introduces the autoregressive layer:

I x = {xi}di=1
I σi

θ(x1:i−1) = sigmoid(siθ(x1:i−1))

I Forward transform gθ(x)i = σi
θ(x1:i−1)xi + (1− σi

θ(x1:i−1))t iθ(x1:i−1).
I Reverse transform g−1

θ (x)i = (xi − (1− σi
θ(x1:i−1))t iθ(x1:i−1))/σ

i
θ(x1:i−1).

I Log-Jacobian
∑d

i=1 log(σi
θ(x1:i−1)).

The Jacobian is triangular (easy computation of the determinant).

Parameterization with the sigmoid is numerically stable (inspired by LSTM
Hochreiter and Schmidhuber (1997)).

Between each autoregressive layer the ordering is reversed.

More involved autoregressive models in practice:

I Masked autoencoders Germain et al. (2015).
I Convolutional autoregressive models Van Oord et al. (2016).

44 / 75



Inverse Autoregressive Flow VAE

Problem: de�ning a �ow is not enough to obtain �exible generative model.
I Kingma et al. (2016) uses a VAE and de�ne a normalizing �ow prior.
I The model is called Inverse Autoregressive Flow VAE.

The “only” change compared to a classical VAE is the de�nition of the prior:
I Gaussian assumption in classical VAE.
I Normalizing �ows in IAFVAE.

The training is still done by maximizing the ELBO. This is possible because
one can compute log(q(z|x)) when parameterized with normalizing �ows.

Figure 15: IAF wor�ow. Image extracted from Kingma et al. (2016).
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Rewriting the ELBO

We recall that the ELBO is given by

L(θ, φ) =
∫
Rp log(pθ(x|z))qφ(z|x)dz − KL(qφ(·|x)|p) .

Usually, p(z) is a Gaussian prior.

More complicated prior pΨ (parametric form).

L(θ, φ) =
∫
Rp log(pθ(x|z))qφ(z|x)dz − KL(qφ(·|x)|pΨ) .

Some interesting cases:

I Cascade of Gaussian models (as in Sønderby et al. (2016)).
I Normalizing �ow (as in IAF-VAE Kingma et al. (2016); Chen et al. (2016)).
I Di�usion model (as in Vahdat et al. (2021); Wehenkel and Louppe (2021)).
I In the case of di�usion model, we need to derive another ELBO.
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Nouveau VAE

Vahdat and Kautz (2020) implements an improved version of IAF-VAE.

I Introduce new architecture for the neural networks.
I Obtain competitive results (VAE + normalizing �ow in latent space).
I The model is called Nouveau VAE.

Note that this idea can be extended to di�usion models Wehenkel and
Louppe (2021); Vahdat et al. (2021) with state-of-the-art results.

Figure 16: NVAE results. Image extracted from Vahdat and Kautz (2020).
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Continuous normalizing �ows
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Continuous Normalizing Flows

One problem of normalizing �ows: the set of valid transformation is
restricted by the tractability of the log-Jacobian.

Moving from the discrete time setting to the continuous time setting allows
greater �exibility (Chen et al. (2018); Grathwohl et al. (2018)).

I Normalizing �ow: O(d3) computation.
I Continuous Normalizing Flow (CNF): O(d2) computation Chen et al. (2018).
I CNF with trace estimator: O(d) computation Grathwohl et al. (2018).

We introduce a continuous evolution:

I A (stochastic) dynamics dXt = b(t,Xt)dt + σ(t,Xt)dBt with X0 ∼ π0.
I (Bt)t≥0 is a d-dimensional Brownian motion.
I b : R+ × Rd → Rd , σ : R+ × Rd → Rd×d smooth, π0 has density p0.
I What is the evolution of t 7→ log(p(Xt))?

This is equivalent to a continuous change of variable.
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Fokker-Planck derivation (1/3)

We make the following assumptions (can be relaxed):

I We assume that for any t ≥ 0, L(Xt) admits a smooth density positive pt
w.r.t. the Lebesgue measure such that (t, x) 7→ pt(x) ∈ C∞(R?+ × Rd ,R+).

I We assume that for any t ≥ 0, there exists Ct ≥ 0 such that for any x ∈ Rd

‖b(t, x)‖+ ‖σ(t, x)‖ ≤ Ct(1 + ‖x‖) .

I Under the previous assumption, we have for any t ≥ 0 and p ∈ N,
E[sups∈[0,t] ‖Xs‖p] < +∞ (Grönwall lemma).

Let f ∈ Cc(Rd) and apply the Itô formula to (f (Xt))t≥0. For any s, t ≥ 0

f (Xt)− f (Xs) =
∫ t
s {〈b(u,Xu),∇f (Xu)〉+ (1/2)〈Σ(u,Xu),∇2f (Xu)〉}du + Mf

t −Mf
s .

I Σ = σσ>.
I The second scalar product is associated with Frobenius norm.
I (Mf

t )t≥0 is a square integrable martingale.
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Fokker-Planck derivation (2/3)

Recall the Itô formula

f (Xt)− f (Xs) =
∫ t
s {〈b(u,Xu),∇f (Xu)〉+ (1/2)〈Σ(u,Xu),∇2f (Xu)〉}du + Mf

t −Mf
s .

Taking the expectation.
I E[f (Xt)− f (Xs)] =

∫
Rd f (x){pt(x)− ps(x)}dx =

∫
Rd f (x)(

∫ t
s ∂upu(x))dx .

I Using the divergence theorem we have

E[〈b(u,Xu),∇f (Xu)〉] =
∫
Rd 〈b(u, x)pu(x),∇f (x)〉dx

= −
∫
Rd div(b(u, ·)pu)(x)f (x)dx .

I Similarly, E[〈Σ(u,Xu),∇2f (Xu)〉] =
∫
Rd

∑d
i,j=1 ∂i,j{Σi,j(u, ·)pu}f (x)dx .

Dividing by (t − s), letting s → t and using the dominated convergence
theorem we get that for any f ∈ Cc(Rd) and t > 0∫

Rd f (x)[−∂tpt(x)− div(b(t, ·)pt)(x) + (1/2)
∑d

i,j=1 ∂i,j{Σi,j(t, ·)pt}]dx = 0 .

Choosing an approximation of the unity and using the smoothness of b,Σ, p
we get that for any t > 0 and x ∈ Rd

∂tpt(x) = −div(b(t, ·)pt)(x) + (1/2)
∑d

i,j=1 ∂i,j{Σi,j(t, ·)pt}(x) .
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Fokker-Planck derivation (3/3)

We obtain the Fokker-Planck equation

∂tpt(x) = −div(b(t, ·)pt)(x) + (1/2)
∑d

i,j=1 ∂i,j{Σi,j(t, ·)pt}(x) .

This equation describes the evolution of the density.

Some special cases:

I Case σ = 0 (deterministic dynamics)

∂tpt(x) = −div(b(t, ·)pt)(x) .

I Case σ = c1/2 Id (c > 0) (Langevin dynamics)

∂tpt(x) = −div(b(t, ·)pt)(x) + (c/2)∆pt(x) = −div({b(t, ·)− (c/2)∇ log pt}pt)(x) .

As a consequence the two following dynamics have the same marginal densities.

I dXt = b(t,Xt)dt + c1/2dBt

I dXt = {b(t,Xt)− (c/2)∇ log pt(Xt)}dt.
I One is deterministic, the other is stochastic (we will come back to this).

52 / 75



Evolution of the log-density

In CNF we consider a deterministic dynamics dXt = b(t,Xt)dt.

Fokker-Planck equation: for any t > 0 and x ∈ Rd ,
∂tpt(x) = −div(b(t, ·)pt).

Di�erentiating the logarithm: for any t > 0 and x ∈ Rd

∂t log(pt)(x) = −〈b(t, x),∇ log pt(x)〉 − div(b(t, x)) .

Di�erentiating the evolution logarithm: for any t > 0

∂t log pt(Xt) = −〈b(t,Xt),∇ log pt(Xt)〉 − div(b(t,Xt)) + 〈b(t,Xt),∇ log pt(Xt)〉

= −div(b(t,Xt)) .

As a result we have for any t ≥ 0

log(pt(Xt))− log(p0(X0)) = −
∫ t

0 div(b(s,Xs))ds .

I The evolution of ∂t log pt(Xt) is an ODE.
I In the discrete case we compute a log-Jacobian (O(d3)).
I In the continuous case we compute a divergence (O(d2)).
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Back to the log-likelihood
In practice the drift b depends on a parameter θ (neural network bθ).
The model is given by pT (easy-to-sample density p0 and T > 0).
We want to optimize the log-likelihood

E[log(pT (XT ))] = E[log(p0(X0))−
∫ T

0 div(bθ(s,Xs))ds] .

I p0 is often chosen to be Gaussian.
I X0 is initialized with YT where Y0 ∼ π (the data distribution) and

dYt = −bθ(T − t,Yt)dt.
I As a result L(XT ) = L(Y0) = π and E[log(pT (XT ))] is the

log-likelihood of the model.
How to train the model?

I How to backpropagate through
an ODE?

I Methods from control theory.
I E�cient computation.
I Review on Neural ODEs Kidger

(2022) (discretize-then-optimize
or optimize-then-discretize).

Figure 17: Evolution of the
density. Image extracted from
Grathwohl et al. (2018).
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Basics of optimal control (1/2)

We recall the method used in Chen et al. (2018) which itself is derived from
Pontryagin (1987).

Assume we want to minimize J(θ) = Φ(zT ) +
∫ T

0 h(θ, t, zt)dt under the
condition that dzt = f (θ, t, zt)dt and z0 = zinit ∈ Rd is �xed.

I We assume enough regularity/boundedness on h and f .
I Everything is deterministic here.

We introduce the Lagrangian

L(θ, z, λ) = Φ(zT ) +
∫ T

0 {h(θ, t, zt) + λt(żt − f (θ, t, zt))}dt .

Note that supz,λ L(θ, ·) = J(θ).

Hence, to minimize J we can consider the following iterative scheme:

I Start with θ0 ∈ Θ.
I Find z0, λ0 such that supz,λ L(θ0, ·) = L(z0, λ0, θ0).
I Let θ1 = θ1 − γ∇θL(z0, λ0, θ0).
I Go back to the �rst step with θ0 ← θ1.
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Basics of optimal control (2/2)

We need to �nd z?, λ? such that supz,λ L(θ, ·) = L(z?, λ?, θ).

Recall that the Lagrangian is given by

L(θ, z, λ) = Φ(zT ) +
∫ T

0 {h(θ, t, zt) + λt(żt − f (θ, t, zt))}dt

= Φ(zT ) +
∫ T

0 Lt(θ, t, λt , xt , ẋt)dt .

The optimality is given by Euler-Lagrange conditions (u = z or λ)

∂utLt(θ, t, λt , xt , ẋt)− ∂t∂u̇tLt(θ, t, λt , xt , ẋt) = 0 .

I u = λ gives dz?t = f (θ, t, z?t )dt.
I u = z gives dλ?t = −∂zth(θ, t, z?t )dt + λ?t ∂zt f (θ, t, z?t ).
I λ has terminal condition λ?T = ∂zT Φ(z?T ).

The last equation is the adjoint state evolution equation.

Computing the gradient w.r.t. θ

∇θL(z?, λ?, θ) =
∫ T

0 ∇θh(θ, t, z?t )− λ?t ∇θf (θ, t, z?t ) .

I We can solve an ODE to compute the gradient.
I Continuous equivalent to the backpropagation.
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Back to the training of normalizing �ows

Recall that in optimal control we minimize J(θ) = Φ(zT ) +
∫ T

0 h(θ, t, zt)dt
with dzt = f (θ, t, zt)dt and z0 = zinit ∈ Rd .

In CNF, we want to optimize the log-likelihood

E[log(pT (XT ))] = E[log(p0(X0))−
∫ T

0 div(bθ)(s,Xs)ds]

= E[log(p0(YT ))−
∫ T

0 div(bθ)(T − s,Ys)ds] .

For a given sample Y0, we can de�ne:

I zt = Yt with zinit = Y0

I f (θ, t, z) = −bθ(T − t, z).
I h(θ, t, z) = −div(bθ)(T − t, z).

Therefore, we can apply the previous optimization scheme with an
amortization w.r.t. Y0.

I Amortization means that at each optimization step we sample Y0 ∼ π.

57 / 75



The CNF method

We optimize the log-likelihood

E[log(pT (XT ))] = E[log(p0(X0))−
∫ T

0 div(bθ(s,Xs))ds] .

To do so we use the amortized adjoint method.
The loss is compared with the one obtained in the discrete-time setting.

E[log(p(XT ))] = E[log(p0(g−1
θ (XT ))) + log(|Jθ(g−1

θ (XT ))|)] .

I Usually gθ = g1
θ ◦ · · · ◦ gLθ .

I In continuous-time the equivalent of the autoregressive layer is
volume preserving (the divergence term is zero). We say that the �ow
is Hamiltonian.

Evaluation log-Jacobian O(d3).

Evaluation divergence O(d2).

Hutchinson estimator O(d)

The last method is called Free-Form
Jacobian Of Reversible Dynamics.

Figure 18: Comparing Glow and
FFJORD. Image extracted from
Grathwohl et al. (2018).
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Summary of Normalizing Flows

Advantages:

I Normalizing Flows are �exible.

Problems:

I There is no latent representation.
I Vanilla normalizing �ows are not competitive in generative modeling.
I The class of �ows is restricted in the discrete-time setting.
I The training can be complicated in the continuous-time setting.

Links with other methods

I VAE can be combined with normalizing �ows Kingma et al. (2016);
Vahdat and Kautz (2020).

I Score-based generative models can be seen as normalizing �ows Song
et al. (2021).
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Generative Adversarial Networks



Principles of Vanilla GAN

In Generative Adversarial Network models we do not optimize the
log-likelihood or a lower-bound on the log-likelihood.
Instead we rely on a minimax game.
We train two competing network.
I A generative network which synthesizes data (fake data).
I A discriminative network which tells which data is fake or real.

This is still related to a divergence on probability measures.

Figure 19: Original GAN model. Image extracted from Feng et al. (2020).

In what follows:
I Vanilla and Least-Square GANs.
I IPM and WPGAN.
I State-of-the-art and a cautionary tale.
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Vanilla and Least-Square GANs
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Loss function and Jensen-Shannon divergence

We consider a generator g : Rp → Rd and a discriminator d : Rd → [0, 1]

(networks) which optimize the loss

`(g, d) = −
∫
Rd log(d(x))dπ(x)−

∫
Rp log(1− d(g(z)))dπ0(z) .

I π is the data distribution, π0 is an easy-to-sample distribution.
I We denote pg the density of g#π0 (assuming that it exists) and p the one

of π.
I In practice we parameterize the generator and discriminator.

For a �xed generator, the optimal discriminator is given by d? such that for
any x ∈ Rd

d?(x) = p(x)/(p(x) + pg(x)) .

Plugging this optimal discriminator into ` we get

`(g, d?) = log(4)−
∫
Rd log(p(x)/pmid(x))dp(x)−

∫
Rd log(pg(x)/pmid(x))dpg(x) .

I Hence, `(g, d?) = log(4)− JS(π, g#π), where JS is the
Jensen-Shannon divergence.

I The discriminator can be used to improve the quality of samples using a
Metropolis-Hastings step Turner et al. (2019).
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A link with regression

The discriminator tries to classify the data
I d(x) = 1 if the data is from the original dataset.
I d(x) = 0 if the data is from the generated dataset.

Consider Y a Bernoulli random variable and Y = 1 with probability dθ(X).
We have p(Y |x, θ) = p(Y = 1|x, θ)Yp(Y = 0|x, θ)1−Y . Hence, we get that∫

Rd×{0,1} log(p(y|x, θ))dπ̄(x, y)

=
∫
Rd×{0,1}{y log p(y = 1|x, θ) + (1− y) log p(y = 0|x, θ)}p̄(x)dπ̄(x, y)

=
∫
Rd×{0,1}{y log(dθ(x)) + (1− y) log(1− dθ(x)))}dπ̄(x, y) .

I π̄ is the such that π̄1 = Ber(1/2).
I (X , Y) ∼ π̄ is such that X ∼ π (data distribution) if Y = 1 and

X ∼ g#π0 (generated distribution) if Y = 0.∫
Rd×{0,1} log(p(y|x, θ))dπ̄(x, y)

= (1/2)
∫
Rd log(dθ(x))dπ(x) + (1/2)

∫
Rp log(1− dθ(g(z)))dπ0(z) .

We recover the cross-entropy loss. This is the same as optimizing
KL(π̄|p(|θ)) (maximum likelihood).
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Least-square GAN

Another �avor of GAN: Least Square GAN Mao et al. (2017).

The discriminator is a classi�er.
I In vanilla GAN we consider the cross-entropy loss Goodfellow et al. (2014).
I In LSGAN we consider the square loss Mao et al. (2017).

The (coupled) losses are given by

`g(d) =
∫
Rd (d(x)− 1)2dπ(x) +

∫
Rp (d(g(z) + 1)2dπ0(z) ,

`d(g) =
∫
Rp d(g(z)2dπ0(z) .

We have `d?(g) = χ2((π + g#π0)/2|g#π0), with χ2 the Pearson divergence.

Figure 20: LSGAN results on LSUN. Image extracted from Mao et al. (2017).

64 / 75



IPM and WPGAN
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Integral Probability Metrics

The concept of generator/discriminator can be recovered using Integral
Probability Metrics.

An IPM is de�ned by a class of functions F ⊂ F(Rd) (measurable function
from Rd to R).

We de�ne PF = {π ∈ P(Rd) : supf∈F0 π[|f |] < +∞} (with f ∈ F0 if
f (0) = 0 and f ∈ F) and dF such that for any π1, π2 ∈ PF

dF(π1, π2) = sup{π1[f ]− π2[f ] : f ∈ F} .

I Symmetric and non-negative if F = −F.
I De�nes a distance on PF if F separates PF in the following sense: for any
π1, π2 ∈ PF there exists f ∈ F such that π1[f ]− π2[f ] 6= 0.

I f ∈ F can be seen as a discriminator between two probability
measures.

Let F be the set of 1-Lipschitz functions.
I F is separating.
I The associated IPM is called the Wasserstein distance of order 1 and is

denoted W1.
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Basics on Wasserstein distances

We have de�ne the Wasserstein distance of order one as

W1(π1, π2) = sup{π1[f ]− π2[f ] : f ∈ Lip1(R
d)} .

This is the dual formulation of the following de�nition

W1(π1, π2) = inf{
∫
Rd×Rd ‖x − y‖dΠ(x, y) : Π ∈ Λ(π1, π2)} .

I Λ(π1, π2) is the set of couplings between π1 and π2

I For any A ∈ P(Rd ×Rd), Π(A×Rd) = π1(A) and Π(Rd × A) = π2(A).

By changing ‖x − y‖ into ‖x − y‖p we can de�ne Wasserstein cost of order p
with p > 0.

I This is a distance on Pp(Rd) = {π ∈ P(Rd) :
∫
Rd ‖x‖p dπ(x) < +∞}

if p ≥ 1.
I This distance is stronger than the weak convergence (equivalent on

compact sets).
I Wasserstein costs are IPM only for p = 1.
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Wasserstein GAN

Di�erent divergences yield di�erent losses (vanilla GAN, LSGAN).
Each IPM can be turned into a GAN.

inf{dF(π, g#π0) : g ∈ G} = inf sup{π[f ]− π0[f ◦ g] : f ∈ F, g ∈ G} ,

I F is the space of test functions (discriminators).
I F is the space of generators.

Arjovsky et al. (2017) uses the Wasserstein distance of order one.
I Lipschitz condition is enforced by clipping of the parameters.

Figure 21: In�uence of training on Wasserstein GANs. Image extracted from
Arjovsky et al. (2017).

68 / 75



Stability with gradient penalty

Gradient clipping can lead to undesired behavior.

Gulrajani et al. (2017) proposes to change the loss function of the GAN.

`(f , g) = π[f ]− π0[f ◦ g] + λπ0[(‖∇f ‖ ◦ g − 1)2] .

I λ > 0 is a regularization parameter.
I The last term is a gradient penalty.

Figure 22: In�uence of the regularization.
Image extracted from Gulrajani et al. (2017).

Figure 23: In�uence of the gradient
penalty. Image extracted from Gulrajani
et al. (2017).
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State-of-the-art and a cautionary tale
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Style GAN

A �rst state-of-the-art GAN: Style GAN Karras et al. (2019).
Style GAN uses the loss of a GP-WGAN.
Main innovation is the architecture of the generator.
Architecture is used in style-transfer Huang and Belongie (2017).

Figure 24: Style GAN architecture and results. Image extracted from Karras et al.
(2019).
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Big GAN

Another state-of-the-art GAN: BigGAN (vanilla GAN).
I Large models and large batch size improve the results.
I Introduction of a truncation trick to obtain a trade-o� between

quality and diversity.
There are still problems with training instablities.
Truncation trick:
I Train model with standard Gaussian in the latent space.
I Sample with truncated Gaussian.
I This improves the quality of results (but reduces the diversity).

Figure 25: BigGAN results and truncation trick. Image extracted from Brock et al.
(2018).
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A cautionary tale

Most of the recent improvements come from the architecture.
Vanilla GAN performs as well as other GANs upon fair comparison Lucic
et al. (2018).
Wasserstein GANs do not really estimate the Wasserstein distance Stanczuk
et al. (2021).
I Lipschitz regularization is always bene�cial.
I Is the Wasserstein distance of order one really what we want to

minimize? There is a con�ict with perceptual criterion.

Figure 26: From left to right: original image, modi�ed image, completely di�erent
image with lower Euclidean norm. Image extracted from Stanczuk et al. (2021).
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Summary of GANs

Advantages:

I GANs provide state-of-the-art results
I They provide interesting latent representations.
I They allows �exible losses and formulations.

Problems:

I it is very hard to train (collapse during training).
I Diversity is a problem (mode collapse).
I Theoretical analysis is hard Biau et al. (2020).

Links with other methods

I GANs can be combined with score-based models Xiao et al. (2021).
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Conclusion



Conclusion

Generative modeling has many di�erent �avors:

I Energy-Based Models.
I Variational AutoEncoders.
I Normalizing Flows (and Autoregressive models).
I Generative Adversarial Networks.

Depending on the application architecture matters.

Until recently GANs were the state-of-the-art in terms of visual results.

In the next sessions: score-based generative modeling:

I New contender with state-of-the-art results.
I Theoretical analysis is possible.
I Links with stochastic control and optimal control.

See you all on the 28/02!
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