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Outline of the course (1/2)

Course 1: Denoising Diffusion Models (introduction & tricks) (06/02)

▶ Introduction of diffusion models.
▶ Connection with ancestral sampling.
▶ A variational approach.

Course 2: Denoising Diffusion Models (theory & methodology) (13/02)

▶ Stochastic processes and time-reversal.
▶ Diffusion models as maximum likelihood models.
▶ Some extensions of score-based generative models.
▶ Lab session: implementing a denoising diffusion model.

Pause (20/02)
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Outline of the course (2/2)

Course 3: Denoising Diffusion models for inverse problems (27/02)

▶ Some inverse problems.
▶ Denoising Diffusion Restoration Models.
▶ Replacement method.
▶ Conditioning of the score and guidance.

Course 4: Stable diffusion (06/03)

▶ Deep dive in stable diffusion.
▶ Text conditioning (CLIP).
▶ Hierarchical models.
▶ Lab session: Stable diffusion.

Course 5: Towards Schrödinger bridges (13/03)

▶ Beyond score-based generative models.
▶ The dynamical Schrödinger Bridge problem.
▶ Iterative Proportional Fitting.
▶ Diffusion Schrödinger Bridge.
▶ Exercise session: Entropic Optimal Transport and Schrödinger Bridges.

3 / 44



Introduction of denoising diffusion models
A new contender:
▶ Denoising Diffusion Models also called Score-Based Generative Models.
Having a hard time keeping up with the literature?
▶ List of references: https://scorebasedgenerativemodeling.github.io/
Advantages of the method:
▶ State-of-the-art results Dhariwal and Nichol (2021); Karras et al. (2022).
▶ High flexibility Poole et al. (2022); Rombach et al. (2022); Balaji et al. (2022);

Saharia et al. (2022).
▶ Theoretical analysis De Bortoli et al. (2021b); Chen et al. (2022); Pidstrigach

(2022); Lee et al. (2022).
Some drawbacks:
▶ Statistical understanding is still limited.

Figure 1: DDM results. Image extracted from Dhariwal and Nichol (2021).
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An application: text-to-image

Text-to-image: Imagen Saharia et al. (2022), DALL-E 2 Ramesh et al. (2022),
Stable Diffusion Rombach et al. (2022), Midjourney, EDiff Balaji et al. (2022).

CLIP (Contrastive Language–Image Pre-training) Radford et al. (2021).
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And beyond images...
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Outline

Goal of the course:

▶ Introduce DDM in with time-reversal (without relying on stochastic
calculus).
▶ Present link with other models.

Outline of the course:

▶ Introduction of DDM with discrete-time reversal.
▶ Introduction of DDM with variational approaches.

Figure 2: Noising process in DDM. Image extracted from Song et al. (2020b).
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Discrete time-reversal and
score-based generative modeling



Outline of the section

In this section we introduce DDM in a “direct” manner.

A bit of “history”:

▶ First paper (variational approach) Sohl-Dickstein et al. (2015).
▶ First successful application Song and Ermon (2019).
▶ Concurrently (variational approach) Ho et al. (2020).

Our presentation is inspired from Song et al. (2020b).

▶ Everything is presented in discrete-time.
▶ Next lecture we will look at a continuous-time version.
▶ No variational interpretation to start with.

We present some techniques to train DDM.

In what follows:

▶ Time-reversal in discrete-time.
▶ Links with annealed Langevin.
▶ Implementation details and tricks.
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Discrete-time
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Principles of DDM

Figure 3: Noising and generative processes in DDM. Image extracted from Song
et al. (2020b).

Interpolating between two distributions:

▶ The data distribution is denoted pdata ∈ P(Rd).
▶ The easy-to-sample distribution is denoted pref ∈ P(Rd).
▶ pref is usually the standard multivariate Gaussian.

Going from the data to the easy-to-sample distribution: noising process.

Going from the easy-to-sample to the data distribution: generative process.

How to invert the forward noising process?
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Ancestral sampling

Let N ∈ N with N > 0 and consider p a density on (Rd)N+1 such that for any
x0:N = {xk}Nk=0 we have

p(x0:N ) = p0(x0)
∏N−1

k=0 pk+1|k(xk+1|xk) .

This the forward decomposition of p.

For any k ∈ {0, . . . ,N − 1} we define themarginal pk+1 for any xk+1 ∈ Rd

pk+1(xk+1) =
∫
Rd pk(xk)pk+1|k(xk+1|xk)dxk .

Assume that for any k ∈ {0, . . .N}, pk > 0 and define pk|k+1 for any
xk, xk+1 ∈ Rd

pk|k+1(xk|xk+1) =
pk+1|k(xk+1|xk)pk(xk)

pk+1(xk+1)
.

We obtain the backward decomposition

p(x0:N ) = pN (xN )
∏N−1

k=0 pk|k+1(xk|xk+1) .
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The noising process (1/2)

The ancestral sampling procedure allows to sample from p backward.

▶ Access to the backward transitions {pk|k+1}N−1
k=0 ?

▶ Tractability of the forward transitions?

In practice we consider:

▶ pdata admits a density p0 w.r.t. the Lebesgue measure.
▶ The forward decomposition is a noising process

p(x0:N ) = p0(x0)
∏N−1

k=0 pk+1|k(xk+1|xk) .

How do we go from the data distribution to the easy-to-sample distribution?

▶ Autoregressive Process: Xk+1 = αXk +
√
1− α2Zk+1 for {Zk}k∈N i.i.d.

N(0, Id) Gaussian and alpha < 1.
▶ Law(xk) → N (0, Id) exponentially fast as k → ∞ (in Wasserstein, TV)
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Inverting the noising process (1/3)

Ornstein-Ulhenbeck process: dXt = −Xtdt +
√
2dBt .

Euler-Maruyama discretization: Xk+1 = (1− γ)Xk +
√
2γZk+1.

Euler-Maruyama discretization of the Ornstein-Ulhenbeck process
converges exponentially fast towards N(0, Id /(1− γ/2)).

Now let us try to invert the forward noising process.

pk|k+1(xk|xk+1) = pk+1|k(xk+1|xk)pk(xk)/pk+1(xk+1)

= C0 exp[−∥xk+1 − (1− γ)xk∥2/(4γ)] exp[log(pk(xk))− log(pk+1(xk+1))]

= C1 exp[−∥xk+1 − (1− γ)xk∥2/(4γ)] exp[log(pk(xk))− log(pk(xk+1))]

= C1 exp[−(∥xk+1 − (1− γ)xk∥2 + 4γ{log(pk(xk))− log(pk(xk+1))})/(4γ)] .

▶ C0,C1 > 0 constants which depend only on xk+1.
▶ ∥xk+1 − (1− γ)xk∥2 =

∥xk − (1+ γ)xk+1∥2 − 2γ∥xk+1 − xk∥2 + γ2{∥xk∥2 − ∥xk+1∥2}.
▶ log(pk(xk)) = log(pk(xk+1)) + ⟨∇ log pk(xk+1), xk − xk+1⟩+∫ 1

0 ∇2 log pk((1− t)xk+1 + txk)(xk − xk+1)
⊗2dt.
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Inverting the noising process (2/3)

Assumption: ∥xk+1 − xk∥2 ≤ Cγ andmax(∥xk∥, ∥xk+1∥) ≤ C

▶
∣∣∥xk+1 − (1− γ)xk∥2 − ∥xk − (1+ γ)xk+1∥2

∣∣ ≤ 4Cγ2.
▶ |log(pk(xk))− log(pk+1(xk+1))− ⟨∇ log pk(xk+1), xk − xk+1⟩| ≤ Dγ.

Hence, we get that

pk|k+1(xk|xk+1) ≈ C2 exp[−∥xk − (1+ γ)xk+1∥2/(4γ)] + ⟨∇ log pk(xk+1), xk − xk+1⟩]

≈ N(xk; xk+1 + γ{xk+1 + 2∇ log pk(xk+1)}, 2γ Id)

▶ The approximation is up to a term of order γ in the exponential.

Sampling from the backward chain: XN ∼ pref

Xk = Xk+1 + γ{Xk+1 + 2∇ log pk(Xk+1)}+
√

2γZk+1 .

∇ log pk is untractable. We are going to approximate this term.
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Score-matching (1/4)

The term∇ log pk is the called the (Stein) score.

Literature on score matching: Hyvärinen (2005); Vincent (2011)

We have the following identity; see e.g. Efron (2011)

∇ log pk(xk) = ∇pk(xk)/pk(xk)

=
∫
Rd ∇ log pk|0(xk|x0) p0,k(x0, xk)dx0/pk(xk)

=
∫
Rd ∇ log pk|0(xk|x0) p0|k(x0|xk)dx0 .

This can be rewritten

∇ log pk(xk) = Ep0|k(·|xk)[∇ log pk|0(xk|X0)] .

An intermediate expression:

▶ ∇ log pk|0(xk|x0) is tractable (forward transition).
▶ The conditional expectation is not (backward conditional).

We are going to use the property of the conditional expectation to obtain a
loss function.
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Score matching (2/4)

We use the following properties of the conditional expectation:

▶ Y = E[X |U ] if Y = f (U ), with f = argmin{E[∥X − f (U )∥2] : f ∈ L2(U )}.

Recall that we have

∇ log pk(Xk) = E[∇ log pk|0(Xk|X0)|Xk] .

Using the previous property we have

∇ log pk = argmin{E[∥f (Xk)−∇ log pk|0(Xk|X0)∥2] : f ∈ L2(pk)} .

We obtain a loss function:

∇ log pk|0(xk|x0) is tractable (forward transition).
The expectation can be approximated withMonte Carlo (joint distribution).

Note that this is valid for k ∈ {0, . . . ,N − 1}.
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Score matching (3/4)

Recall that the loss function is given by

∇ log pk = argmin{E[∥f (Xk)−∇ log pk|0(Xk|X0)∥2] : f ∈ L2(pk)} .

This loss function is called the Denoising ScoreMatching loss.

▶ log pk|0(xk|x0) = −∥xk −mkx0∥2/(2σ2
k) + Ck

▶ mk = (1− γ)k , σ2
k = {1− (1− γ)2k}/(1− γ/2), Ck independent of xk .

▶ ∇ log pk|0(xk|x0) = −(xk −mkx0)/σ2
k .

▶ Xk = mkX0 +
√
2γ

∑k
j=1(1− γ)k−jZk = mkX0 + σkẐj+1, Ẑk ∼ N(0, Id).

▶ ∇ log pk|0(Xk|X0) = −Ẑk/σ
2
k .

▶ f tries to predict the residual noise.

Another formulation: the loss satisfies

E[∥f (Xk)−∇ log pk|0(Xk|X0)∥2]

= E[∥f (Xk)∥2]− 2E[⟨f (Xk),∇ log pk|0(Xk|X0)⟩] + E[∥∇ log pk|0(Xk|X0)∥2] .
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Score matching (4/4)

The scalar product satisfies

E[⟨f (Xk),∇ log pk|0(Xk|X0)⟩ |X0] =
∫
Rd ⟨f (xk),∇ log pk|0(xk|X0)⟩pk|0(xk|X0)dxk

=
∫
Rd ⟨f (xk),∇pk|0(xk|X0)⟩dxk

= −
∫
Rd div(f (xk))pk|0(xk|X0)dxk

= −E[div(f (Xk)) |X0] .

Hence the loss satisfies

E[∥f (Xk)−∇ log pk|0(Xk|X0)∥2]

= E[∥f (Xk)∥2 + 2div(f (Xk))] + E[∥∇ log pk|0(Xk|X0)∥2] .

We obtain the Implicit ScoreMatching loss function

∇ log pk = argmin{E[ 12∥f (Xk)∥2 + div(f (Xk))] : f ∈ L2(pk)} .

Comparison between ISM/DSM:
▶ DSM: access to ∇ log pk|0.
▶ ISM: no need of the transition density but computation of a divergence.
▶ Approximation with the Hutchinson estimator.
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Training algorithm

We choose the DSM or ISM loss for all k ∈ {1, . . . ,N}

▶ DSMk(f ) = E[∥f (Xk)−∇ log pk|0(Xk|X0)∥2].
▶ ISMk(f ) = E[ 12∥f (Xk)∥2 + div(f (Xk))].

Defining the integrated loss:

▶ ℓDSM(f ) =
∑N

k=1 λkDSMk(f (k, ·)),
▶ ℓISM(f ) =

∑N
k=1 λkISMk(f (k, ·)).

▶ We define a weighting function λk ≥ 0.

Let {sθ}θ∈Θ a a parametric family of functions such that
sθ : R+ × Rd → Rd .

▶ Usually {sθ}θ∈Θ is a family of neural networks.
▶ We optimize ℓDSM(θ) = ℓDSM(sθ) or ℓISM(θ) = ℓISM(sθ).

19 / 44



Backward sampling

Recall the goal:
▶ Sample from p(x0:N ) = pN (xN )

∏N−1
k=0 pk|k+1(xk|xk+1) (ancestral

sampling).
▶ Approximate backward

pk|k+1(xk|xk+1) ≈ N(xk; xk+1 + γ{xk+1 + 2∇ log pk(xk+1)}, 2γ Id).

▶ Approximation of the score (DSM or ISM losses).
Once sθ⋆ is learned via DSM or ISM losses, i.e. sθ⋆(k, ·) ≈ ∇ log pk .
Sampling scheme:
▶ XN ∼ N(0, Id) (approximate sampling from pN ).
▶ Approximate ancestral sampling

Xk = Xk+1 + γ{Xk+1 + 2sθ⋆(kγ,Xk+1)}+
√

2γZk+1 .

▶ X1 is approximately distributed according to the data-distribution.
Some remarks:
▶ Time-reversal can be obtained in continuous-time.
▶ Original approach relies on annealed Langevin Song and Ermon (2019).
▶ Other approaches Ho et al. (2020); Gao et al. (2020).
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Links with annealed Langevin
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Failure of the score-estimation

We now present (one) original approach by Song and Ermon (2019).
Goal: sampling from the data distribution p0.
▶ Langevin algorithm: Xk+1 = Xk + γ∇ log p0(Xk) +

√
2γZk+1.

▶ Estimation of the Stein score ∇ log p0 with ISM

∇ log p0 = argmin{E[ 12∥f (X)∥
2 + div(f (X))] : f ∈ L2(p0)} .

▶ X ∼ p0.
Problems:
▶ Slow mixing with Langevin algorithm (non-convexity Eberle (2016)).
▶ Bad score approximation.

Figure 4: Image extracted from an online tutorial blogpost.
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The power of smoothing

A solution: smoothing the density.
▶ Spreading the observations lead to better score estimations.
▶ Smoothing leads to better landscapes of the potential and faster

mixing (removal of spurious minima).
Problem: we do not target the right density.
▶ pσ = p ∗ N(0, σ2).
▶ We have that Var(pσ) = Var(p) + σ2.

Trade-off:
▶ Small value of σ: close to p0, hard to sample.
▶ Large value of σ: far from p0, easy to sample.

Figure 5: Image extracted from an online tutorial blogpost.
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The best of both worlds

The main of idea of Song and Ermon (2019): annealed Langevin dynamics.
▶ Starting from a large value of σT , sample easily using the Langevin

dynamics.
▶ Reduce the value of σT > σT−1 and warm-start the new Langevin dynamics

with the previous samples.
▶ Repeat the procedure with σ0 very small (close to the target density).
▶ This is an annealed procedure.

Figure 6: Image extracted from an online tutorial blogpost.
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Annealing algorithm

Algorithm 1 Sampling of annealing Langevin dynamics
1: Input: {σt}Tt=1, {γ}Tt=1, K
2: Initialize X 0

T ∼ N (0, σT Id).
3: for t = T to 1 do
4: for k = 0 to K − 1 do
5: Sample X k+1

t = X k
t + γtsθ(σt ,X k

t ) +
√
2γtZk+1

t

6: end for
7: X 0

t−1 = XK
t

8: end for
9: Return X 0

0 .

If K = 1 then it is equivalent to the time-reversal except that:
▶ {γt}Tt=1 is a priori unrelated to {σt}Tt=1 contrary to the time-reversal

approach where we would have γt = γ and σ2
t = tγ.

▶ Main difference is that the forward process is the discretization of a
Brownian motion and not a Ornstein-Ulhenbeck process.

▶ Xk+1 = Xk − γXk +
√
2γZk+1 in the Ornstein-Ulhenbeck setting and

Xk+1 = Xk +
√
2γZk+1 in the Brownian case.
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Implementation details and tricks
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Careful implementation is necessary

Originally these models were hard to train Song and Ermon (2019), see also
this blogpost.

In what follows we describe a series of tricks which greatly facilitate the
training of these models. These tricks can be found in Song et al. (2020b);
Song and Ermon (2020); Nichol and Dhariwal (2021); Ho and Salimans (2021);
De Bortoli et al. (2021a); Karras et al. (2022).

We do not discuss the architecture here.

In what follows we discuss the following tricks:
▶ Ornstein-Ulhenbeck and discretization
▶ Loss function weighting.
▶ Exponential Moving Average.
▶ Adapted variance and predictor-corrector.
▶ Conditional sampling and classifier-free guidance.
▶ (not covered) Better sampler.
▶ (not covered) Better architectures.
▶ (not covered) Self-conditioning.
▶ (not covered) Latent and hierarchical diffusions.
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Ornstein-Ulhenbeck and discretization
We have introduced denoising diffusion models as the discretization of a
Ornstein-Ulhenbeck process:
▶ Target measure is N(0, Id) (approximately), the data should be

centered and reduced.
▶ Constant stepsize discretization is not what is done in practice.

In practice we consider a schedule on the stepsize:

Xk = Xk+1 + γk{Xk+1 + 2sθ(
∑k

j=0 γj,Xk+1)}+
√
2γkZk+1 .

▶ Linear schedule γk = γmin + (γmax − γmin)(N − k)/N Song et al. (2020b).
▶ Intuition: we need more stepsizes near the data distribution.
▶ Different schedules (cosine, hyperbolic tangent) Song and Ermon (2019);
Ho et al. (2020); Nichol and Dhariwal (2021); Karras et al. (2022).

Figure 7: Budget of stepsizes. Image extracted from Watson et al. (2021).
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Loss function weighting

In practice a weighted version of the DSM loss is used.

▶ Recall that the DSM loss is given by
DSMk(f ) = E[∥f (Xk)−∇ log pk|0(Xk|X0)∥2].

▶ ℓDSM(f ) =
∑N

k=1 λkDSMk(f (k, ·)).
▶ ∇ log pk|0(Xk|X0) = −Ẑk/σ

2
k

Intuition: λk function of σk to stabilize the loss Song et al. (2020b).

Additional remarks:

▶ In Ho et al. (2020); Nichol and Dhariwal (2021) this loss is given by Lsimple.
▶ Justification with Girsanov theory in Song et al. (2021); Huang et al. (2021).
▶ Changing the discretization schedule is equivalent to do a time-change in

the original Ornstein-Ulhenbeck process then a fixed discretization.
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Exponential Moving Average

The training of the network is unstable.

To regularize this we consider an ExponentialMoving Average of weights.

θ̄n+1 = (1−m)θ̄n +mθn .

▶ The parameter m corresponds to the forgetting of the initial conditions.
▶ The parameters θ̄K are used at sampling times (K is the number of

training steps).

Figure 8: Training instabilities. Image extracted from Song and Ermon (2020).
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Adapted variance and predictor-corrector

Recall that we consider the following Euler-Maruyama discretization

Xk = Xk+1 + γk{Xk+1 + 2sθ(
∑k

j=0 γj,Xk+1)}+
√
2γkZk+1 .

Instead of a classical Euler-Maruyama discretization we can consider aModified
Euler-Maruyama scheme Durham and Gallant (2002).
▶ Replace the term 2γk by 2γk{

∑k−1
j=1 γj/

∑k
j=1 γj}.

▶ This discretization scheme can be found in the literature on stochastic
bridges De Bortoli et al. (2021a).

▶ Intuition: smaller variance near the data distribution.
We can also correct the Euler-Maruyama scheme using the time-reversal

property.
▶ We must have L(Xk) ≈ pk .
▶ Hence we go from Xk+1 to X̂k with the Euler-Maruyama scheme (predictor).
▶ We refine X̂k by running a Langevin chain targeting pk (corrector).

X 0
k = X̂k , X ℓ+1

k = X ℓ
k + δkγsθ(

∑k
j=0 γj,Xk) +

√
2δkZℓ+1

k .

▶ {δk}Nk=0 is a sequence of stepsizes and we set Xk = X L
k (L ∈ N).
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Conditional sampling and classifier-free guidance

If the data distribution contains classes (like MNIST, CIFAR-10, LSUN,
ImageNet or CelebA when classifying by attributes) then we can exploit this
extra structure.
Define a conditional score DSMk(f ) = E[∥f (X c

k , c)−∇ log pk|0(X c
k |X c

0 )∥2].
▶ c ∈ {1, . . . ,C} is the class of the image.
▶ Then, we can (approximately) sample from the class c by considering

X c
N ∼ N(0, Id)

X c
k = X c

k+1 + γk{X c
k+1 + 2sθ(

∑k
j=0 γj,X

c
k+1, c)}+

√
2γkZk+1 .

Figure 9: Class conditional generation. Image extracted from Song et al. (2020b).
Other improvements with unconditional guidance Ho and Salimans (2021)
or classifier guidance Dhariwal and Nichol (2021).
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Other approaches



Links with other models

Until now we have presented two approaches to derive denoising diffusion
models (DDMs) :

▶ A discrete-time time-reversal approach.
▶ An annealed Langevin approach.

The time-reversal approach is now widely used Song et al. (2020b).

We now present links with other generative models:

▶ DDMs as variational autoencoders Ho et al. (2020).

The connection with variational autoencoders allows for:

▶ Extension to discrete settings
▶ Acceleration of the sampling dynamics Watson et al. (2021)

In the next sessions we will see links with normalizing flows and GANs.
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Connections with Variational AutoEncoders
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A variational perspective

We follow the approach of Ho et al. (2020).
Variational approach offers great flexibility:
▶ Optimization of the stepsize Watson et al. (2021).
▶ Learning of the covariance matrix Nichol and Dhariwal (2021).
▶ Non-Markov dynamics Song et al. (2020a).

Ho et al. (2020) was the first to propose a discretized Ornstein-Ulhenbeck
Markov chain as a forward process.

Figure 10: CelebA and CIFAR10 results. Image extracted from Ho et al. (2020).
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An Evidence Lower BOund (1/2)

We start by deriving an ELBO for the score-based generative models. Note
that such a derivation was already obtained by Sohl-Dickstein et al. (2015).
Similar to VAE we maximize the log-likelihood

log(pθ,0(x0)) = log(
∫
(Rd)N

∏N−1
k=0 pθ,k|k+1(xk|xk+1)pN (xN )dx1:N )

= log(
∫
(Rd)N

∏N−1
k=0 pθ,k|k+1(xk|xk+1)pN (xN )/q(x1:N |x0)q(x1:N |x0)dx1:N )

≥
∫
(Rd)N

log(
∏N−1

k=0 pθ,k|k+1(xk|xk+1)pN (xN )/q(x1:N |x0))q(x1:N |x0)dx1:N .

The last inequality is obtained the concavity of the logarithm.
We now choose the variational distribution q(x1:N |x0):
▶ We choose a tractable (Gaussian) decomposition
q(x1:N |x0) =

∏N−1
k=0 qk+1|k(xk+1|xk).

▶ Factorization q(x1:N |x0) = qN |0(xN |x0)
∏N−1

k=1 qk|k+1,0(xk|xk+1, x0).
▶ Tractability of qk|k+1,0.
Here, we consider

qk+1|k(xk+1|xk) = N(xk+1; (1− γ)xk, 2γ Id).

This is a slightly different discretization from the one of Ho et al. (2020).
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An Evidence Lower BOund (2/2)

Recall that we have log(pθ,0(x0)) ≥ L with

L =
∫
(Rd)N

log(
∏N−1

k=0 pθ,k|k+1(xk|xk+1)pN (xN )/q(x1:N |x0))q(x1:N |x0)dx1:N .

We use the backward decomposition of q(x1:N |x0) and we get

L = LN +
∑N−1

k=1 Lk + L0 ,

with:

▶ LN =
∫
Rd log(pN (xN )/qN |0(xN |x0))qN |0(xN |x0)dxN .

▶ Lk =
∫
Rd log(pθ,k|k+1(xk|xk+1)/qk|k+1,0(xk|xk+1, x0))qk,k+1|0(xk, xk+1|x0)dxk .

▶ L0 =
∫
Rd log(pθ,0|1(x0|x1))q1|0(x1|x0)dx1.

The different terms:

▶ LN does not depend on θ.
▶ Lk is related to score-matching.
▶ L0 is more complicated and will be dealt with later.
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The backward qk|k+1,0 (1/2)

To compute Lk we need to compute qk|k+1,0.

We know that qk|k+1,0 is Gaussian with diagonal covariance and just need
to compute its parameter.

qk|0 = N(αkx0, σk Id) and qk+1|k = N(αk+1|k, σk+1|k Id).

Computing the parameters:

▶ αk+1|k = 1− γ, σ2
k+1|k = 2γ.

▶ Xk+1 = (1−γ)kX0+
√
2γ

∑k
j=1(1−γ)k−jZj+1 = (1−γ)kX0+σk+1Ẑk+1.

▶ Ẑk+1 ∼ N(0, Id) and σ2
k+1 = (1− (1− γ)2k)/(1− γ/2).

▶ αk+1 = (1− γ)k , σ2
k+1 = (1− (1− γ)2k)/(1− γ/2).

We have that

qk|k+1,0(xk|xk+1, x0) = qk+1|k(xk+1|xk)qk|0(xk|x0)/qk+1|0(xk+1|x0) .

▶ We can discard the denominator (normalizing constant).
▶ We can focus on log(qk+1|k(xk+1|xk)qk|0(xk|x0)).
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The backward qk|k+1,0 (2/2)

We have that

− 2 log(qk+1|k(Xk+1|Xk)qk|0(Xk|X0))

= ∥Xk+1 − αk+1|kXk∥2/σ2
k+1|k + ∥Xk − αkX0∥2/σ2

k

= {α2
k+1|k/σ

2
k+1|k + (1/σ2

k)}∥Xk∥2 − 2⟨αk+1|k/σ
2
k+1|kXk+1 + αk/σ

2
kX0,Xk⟩+ C

= (1/σ2
k|k+1)∥Xk∥2

− 2⟨{αk+1|k/σ
2
k+1|k + αk/(αk+1σ

2
k)}Xk+1 + αkσk+1/(αk+1σ

2
k)Ẑk+1,Xk⟩+ C

= (1/σ2
k|k+1)∥Xk∥2 − (2/σ2

k|k+1)⟨Ak|k+1Xk+1 − Bk|k+1Ẑk+1,Xk⟩+ C

= ∥Xk − Ak|k+1Xk+1 + Bk|k+1Ẑk+1∥2/(2σ2
k|k+1) + D .

▶ C,D constants independent from xk .
▶ σ2

k|k+1 = (α2
k+1|k/σ

2
k+1|k + (1/σ2

k))
−1.

▶ Ak|k+1 = αk+1|k(σk|k+1/σk+1|k)
2 + αkσ

2
k|k+1/(αk+1σ

2
k).

▶ Bk|k+1 = (αkσk+1σ
2
k+1|k)/(αk+1σ

2
k).

Therefore, we choose the family

log(pθ,k|k+1(xk|xk+1)) = ∥xk − Ak|k+1xk+1 + Bk|k+1ẑθ,k+1(xk+1)∥2/(2σ2
k|k+1) + E .

E is a constant, ẑθ,k+1(xk+1) is a function of xk+1 (estimator of the noise).
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Sampling from the model

How to train and sample the model?

Recall that we have set

log(pθ,k|k+1(xk|xk+1)) = ∥xk − Ak|k+1xk+1 + Bk|k+1ẑθ,k+1(xk+1)∥2/(2σ2
k|k+1) + E .

Recall that pN = N(0, Id). To sample from the model:

▶ We sample XN ∼ N(0, Id)
▶ We consider the backward update

Xk = Ak|k+1Xk+1 − Bk|k+1ẑθ,k+1(Xk+1) + σk|k+1Zk+1 .

To train the model (without the therm L1|0):

▶ Minimize
∑N

k=1 Lk(θ), with

Lk(θ) = E[∥Xk − Ak|k+1Xk+1 + Bk|k+1ẑθ,k+1(Xk+1)∥2]/(2σ2
k|k+1) .

40 / 44



Taylor expansion and comparison with DDM (2/2)

The model is already similar to DDM:

▶ We sample from N(0, Id) and use ancestral sampling.
▶ We train part of the drift term.

The analogy becomes even stronger when considering Taylor expansion of
Ak|k+1, Bk|k+1 and σk|k+1:

▶ Ak|k+1 = 1+ γ + o(γ).
▶ Bk|k+1 = 2γ + o(γ).
▶ σ2

k|k+1 = 2γ + o(γ).

Hence
Xk = Ak|k+1Xk+1 − Bk|k+1ẑθ,k+1(Xk+1) + σk|k+1Zk+1 ,

becomes (up to the first order)

Xk = (1+ γ)Xk+1 − 2γẑθ,k+1(Xk+1) +
√

2γZk+1 .

We can identify this recursion with the one of DDM if ẑθ,k+1 ≈ −∇ log pk+1,
i.e. the neural network approximates the score.
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Taylor expansion and comparison with DDM (2/2)

We want to show that ẑθ,k+1 ≈ −∇ log pk+1, i.e. the neural network
approximates the score.

Recall that we minimize the sum of the following loss functions

Lk(θ) = E[∥Xk − Ak|k+1Xk+1 + Bk|k+1ẑθ,k+1(Xk+1)∥2]/(2σ2
k|k+1) .

Up to the first order we get that

Lk(θ) = E[∥Xk − (1+ γ)Xk+1 + 2γẑθ,k+1(Xk+1)∥2]/(2γ) .

But we have (1+ γ)Xk+1 = (1− γ2)Xk +
√
2γ(1+ γ)Zk+1.

Hence, up to the first order we get that

Lk(θ) = E[∥
√

2γZk+1 + 2γẑθ,k+1(Xk+1)∥2]/(2γ) ,

This is exactly the Denoising Score Matching loss (up to a minus term)
times λk (the weighting function appearing score-based models being fixed
to λk = 2γ).
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The term L0

The previous recursion is valid up to k = 1.
pθ is an independent decoder on the pixel of the image.
We assume that x0 ∈ [−1, 1]d

pθ(x0|x1) =
∏d

i=1

∫ b(xi0)
a(xi0)

exp[−∥x − µθ(x1)∥2 /σ2
1 ]/(2πσ2

1)
ddx .

a(t) = t + 1/255 if t < 1 and +∞ otherwise.
b(t) = t − 1/255 if t > −1 and −∞ otherwise.
We could also have chosen the classical (non-discrete) decoding Gaussian of
the VAE.

Figure 11: CelebA results. Image extracted from Ho et al. (2020). 43 / 44



Conclusion



Conclusion

We have introduced denoising diffusion models.

▶ Motivation with state-of-the-art results.
▶ Ancestral sampling and time-reversal (discrete-time).
▶ Tricks and implementation.
▶ Connection with EBM and VAE.

Next time:

▶ Denoising diffusion models in continuous time and results.
▶ Normalizing flows and Likelihood computation.
▶ Acceleration of DDMs.
▶ A continuous-time ELBO with Girsanov and Feynman-Kac theory.
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