
Diffusion models
(theory & extensions)

Valentin De Bortoli

March 5, 2023

1 / 50

Summary of the previous lecture

The previous lecture was an introduction to diffusion models:

▶ Ancestral sampling and discrete time-reversal.
▶ Efficient and stable implementation.
▶ Links with annealed Langevin.
▶ Connections with EBMs and VAEs.

Recall the basics of diffusion model:

▶ Sample a forward trajectory, noising the distribution.

Xk+1 = Xk − γXk +
√

2γZk+1 .

▶ Sample a backward trajectory via ancestral sampling.

Xk = Xk+1 + γ{Xk+1 + sθ(kγ,Xk+1)}+
√

2γZk+1 .

▶ Backward sampling relies on learning the score (score-matching)

sθ⋆(kγ, ·) = argminθ{E[∥sθ(kγ,Xk)−∇ log pk|0(Xk|X0)∥2] : f ∈ L2(pk)} .

2 / 50

Continuous diffusion models

Continuous forward process

Recall that in classical diffusion models, the forward dynamics is given by the
following Markov chain

Xk+1 = Xk − γXk +
√

2γZk+1 .

This is the Euler-Maruyama discretization of the Ornstein-Ulhenbeck
process.

dXt = −Xtdt +
√
2dBt .

▶ A technical point Ikeda and Watanabe (2014): two different definitions.

▶ A strong solution: given a probability space (Ω,F ,P) and a Brownian
motion (Bt)t≥0 with filtration (Ft)t≥0 we want to find (Xt)t≥0 which is
(Ft)t≥0 adapted and for any t ≥ 0

Xt = X0 +
∫ t
0 b(s,Xs)ds +

∫ t
0 σ(s,Xs)dBs .

▶ A weak solution: we just need that there exists a probability space such that
such a process exists.

3 / 50

Technical point continued

The weak formulation is equivalent to amartingale problem, see (Stroock
and Varadhan, 1997, Chapter 6).

We introduce the infinitesimal generator A : R+ × C2(Rd) → F(Rd)

such that for any f ∈ C2(R+ × Rd) and t ≥ 0

A (t, f)(x) = ⟨b(t, x),∇f (t, x)⟩+ (1/2)⟨Σ(t, x),∇2f (t, x)⟩ .

▶ Σ = σ⊤σ.
▶ Morally, E[A (t, f)(Xt)] = limh→0(E[f (Xt+h)]− E[f (Xt)])/h.

The existence of a weak solution is equivalent to the existence of a process
(Xt)t≥0 such that for any f ∈ C2(R+ × Rd), the process (Mf

t)t≥0 is a
(Ft)t≥0-martingale where

Mf
t = f (t,Xt)− f (0,X0)−

∫ t
0 (∂sf (s,Xs) + A (s, f)(Xs))ds .

4 / 50

Analysis of the Ornstein-Ulhenbeck process

Back to the Ornstein-Ulhenbeck (OU) process, strong solutions exist. The
OU process is the nicest process:
▶ (Xt)t≥0 is a Gaussian process
▶ (Xt)t≥0 admits a closed form solution

Xt = e−tX0 + B1−e−2t .

▶ From the previous equation it is clear that

W2(L(Xt),N(0, Id)) ≤ e−t{E1/2[∥X0∥2] + d1/2} .

We can also control the Kullback-Leibler divergence between L(Xt) and
N(0, Id) using that N(0, Id) satisfies a logarithmic Sobolev inequality Bakry
et al. (2014).

We can also control theχ2 divergence between L(Xt) and N(0, Id) using that
N(0, Id) satisfies a Poincaré inequality Bakry et al. (2014).

Geometric convergence rates independent of the dimension.

Very fast mixing compared to Langevin dynamics targeting non-convex
potentials.

5 / 50

Time reversal

In discrete time we consider the ancestral sampling of the discretized
Ornstein-Ulhenbeck.

In the continuous-time setting we need to compute the time-reversal of the
Ornstein-Ulhenbeck.
▶ More precisely: does (Yt)t∈[0,T] = (XT−t)t∈[0,T] also satisfies a

Stochastic Differential Equation (SDE)?
The answer is yes under conditions and (Yt)t∈[0,T] is a (weak) solution of the
following SDE

dYt = {Yt + 2∇ log pT−t(Yt)}dt +
√
2dBt .

Note that for any t ∈ [0, T], pt is the density of L(Xt) w.r.t. the Lebesgue
measure, where we recall that (Xt)t∈[0,T] is the forward noising process, here
a Ornstein-Ulhenbeck process.

A few remarks:
▶ First found in Anderson (1982); Haussmann and Pardoux (1986).
▶ The time-reversal formula is valid formore complicated diffusions.
▶ Previous formula is valid in an abstract setting Cattiaux et al. (2021).

6 / 50

Time Reversal and Comparison with ancestral sampling

Recall that in the discrete-time setting we have (denoting
{Yk}Nk=0 = {XN−k}Nk=0)

Yk+1 = Yk + γ{Yk + 2∇ log pN−k(Yk)}+
√

2γZk+1 .

In the continuous-time setting we have

dYt = {Yt + 2∇ log pT−t(Yt)}dt +
√
2dBt .

There is a clear link between the two formulations with Euler-Maruyama
discretization.

Note that pN−k is the density of L(XN−k) while pT−t is the density of L(XT−t)

but these two densities are close if the stepsize is small.

In practice the Stein score is approximated using score-matching.

▶ DSM and ISM losses can be defined in continuous-time.
▶ Continuous losses can be used in practice because we can exactly

sample from the Ornstein-Ulhenbeck process.

7 / 50

A first theoretical result (setting)

We want to know how close the generative model is to the true data
distribution.

In order to do so we consider the total variation distance between L(YN)

and p (the data distribution).

▶ Recall that ∥µ− ν∥TV = sup{µ(A)− ν(A) : A ∈ B(Rd)}
▶ If µ, ν admit densities f , g w.r.t the Lebesgue measure we have that

∥µ− ν∥TV = ∥f − g∥1.
▶ This distance is stronger than the weak convergence.
▶ This distance can be seen as a Wasserstein distance with cost ℓ0.

We are going to consider theMarkov chain

Yk+1 = Yk + γ{Yk + 2sθ⋆((N − k)γ, Yk)}+
√

2γZk+1 .

This Markov chain is initialized with Y0 ∼ N(0, Id).

The data distribution is denoted by π.

8 / 50

Theoretical result

Convergence of diffusion models (De Bortoli et al., 2021)

Assume there exists M ≥ 0 such that for any t ∈ [0, T] and x ∈ Rd

||sθ⋆(t, x)−∇ log pt(x)|| ≤ M ,

with sθ⋆ ∈ C([0, T] × Rd ,Rd) and regularity conditions on the density of π
w.r.t. the Lebesgue measure and its gradients.

Then there exist B,C,D ≥ 0 s.t. for any N ∈ N and {γk}Nk=1 the following
hold:

∥L(YN)− π∥TV ≤ B exp[−T] + C(M + γ1/2) exp[DT] .

where T = Nγ.

A few remarks:
▶ The assumption on π is not satisfied if π defined on amanifold of Rd

with dimension p < d, see De Bortoli (2022)
▶ The approximation assumption is strong and could be relaxed.
▶ The term exp[DT] can be improved to a polynomial dependency.
▶ Extension & Improvements Lee et al. (2022); Chen et al. (2022, 2023).

9 / 50

Sketch of the proof

The central decomposition

∥L(YN)− π∥TV = ∥π0R̂N − π∥TV
= ∥π0R̂N − pTQT∥TV
≤ ∥π0R̂N − π0QT∥TV + ∥pTQT − π0QT∥TV
≤ ∥π0R̂N − π0QT∥TV + ∥πPT − π0∥TV ,

where
▶ π0 = N(0, Id), π is the data distribution.
▶ (Pt)t∈[0,T] is the forward Ornstein-Ulhenbeck semi-group.
▶ (Qt)t∈[0,T] is the backward Ornstein-Ulhenbeck semi-group.
▶ (R̂n)n∈{1,...,N} is the iterated kernel associated with the backward

Markov chain.
∥π0R̂N − π0QT∥TV is the approximation error.
▶ We first use the Pinsker theorem and control KL(π0R̂N |π0QT).
▶ Then we use the transfer theorem and Girsanov theory, similarly to

Durmus and Moulines (2017); Dalalyan (2017).
∥πPT − π0∥TV is themixing time.
▶ This is simply the geometric ergodicity of the Ornstein-Ulhenbeck.

10 / 50

Bottleneck of score-matching methods

We end up with

∥L(YN)− π∥TV ≤ B exp[−T] + C(M + γ1/2) exp[DT] .

A few remarks:

▶ The mixing time of the reverse is the same as the mixing time of the
forward. This is a remarkable property because the backward targets a
potentially complicated distribution.

▶ Where is the trick? The bottleneck is in the computation of the drift.
▶ To compare it with the Unadjusted Langevin Algorithm (ULA)

(statistical sampling). The mixing time depends on the convexity of the
target but the drift is tractable.

▶ Here the mixing time is independent of the convexity of the target but
the drift is approximated.

▶ Note that the two algorithms do not solve the same problem. ULA
addresses the statistical sampling problem while diffusion model
addresses the generative modeling problem.

11 / 50

Likelihood computation and
continuous normalizing flows

Outline of the section

In this section:

▶ We present a link with Normalizing Flows.
▶ We highlight the training differences with normalizing flows.
▶ We present likelihood computation results.
▶ We show the advantages of a deterministic transform.

Figure 1: Interpolation with ODE flow. Image extracted from Song et al. (2021).

12 / 50

Recap on Continuous Normalizing Flows

One problem of normalizing flows: the set of valid transformation is
restricted by the tractability of the log-Jacobian.

Moving from the discrete time setting to the continuous time setting allows
greater flexibility (Chen et al. (2018); Grathwohl et al. (2018)).

▶ Normalizing flow: O(d3) computation.
▶ Continuous Normalizing Flow (CNF): O(d2) computation Chen et al. (2018).
▶ CNF with trace estimator: O(d) computation Grathwohl et al. (2018).

We introduce a continuous evolution:

▶ A (stochastic) dynamics dXt = b(t,Xt)dt + σ(t,Xt)dBt with X0 ∼ π0.
▶ (Bt)t≥0 is a d-dimensional Brownian motion.
▶ b : R+ × Rd → Rd , σ : R+ × Rd → Rd×d smooth, π0 has density p0.
▶ What is the evolution of t 7→ log(pt(Xt)), where pt = L(Xt)?

This is equivalent to a continuous change of variable.

13 / 50

Recap on the Fokker-Planck equation

We have the Fokker-Planck equation

∂tpt(x) = −div(b(t, ·)pt)(x) + 1
2
∑d

i,j=1 ∂i,j{Σi,j(t, ·)pt}(x) ,

where div(a(t, x)) :=
∑d

i=1 ∂xiai(t, x).

This equation describes the evolution of the density.

Some special cases:
▶ Case σ = 0 (deterministic dynamics)

∂tpt(x) = −div(b(t, ·)pt)(x) .

▶ Case σ = c1/2 Id (c > 0) (Langevin dynamics)

∂tpt(x) = −div(b(t, ·)pt)(x) + c
2∆pt(x) = −div({b(t, ·)− c

2∇ log pt}pt)(x) .

As a consequence the two following dynamics have the same marginal densities.
▶ dXt = b(t,Xt)dt + c1/2dBt

▶ dXt = {b(t,Xt)− c
2∇ log pt(Xt)}dt.

▶ One is deterministic, the other is stochastic.
14 / 50

Log-likelihood evaluation

Assume that the deterministic process (Xt)t∈[0,T] satisfies

dXt = b(t,Xt)dt .

The associated Fokker-Planck equation is

∂tpt(x) = −div(b(t, ·)pt)(x) .

Evolution of the logarithm

∂t log pt(x) = −div(b(t, ·))(x)− ⟨b(t, x),∇ log pt(x)⟩ .

Combining the two dynamics

d log pt(Xt) = [∂t log pt(Xt) + ⟨dXt ,∇ log pt(Xt)⟩]dt

= [−div(b(t, ·))(Xt)− ⟨b(t,Xt),∇ log pt(Xt) + ⟨b(t,Xt),∇ log pt(Xt)]dt

= −div(b(t, ·))(Xt)dt .

Hence, we have the following log-likelihood computation

log(p0(X0)) = log pT (XT) +
∫ T
0 div(b(t, ·))(Xt)dt .

15 / 50

From score-based models to normalizing flows

Recall that the continuous-time version of diffusion model is given by

dYt = {Yt + 2∇ log pT−t(Yt)}dt +
√
2dBt .

It is the backward dynamics associated with the forward
Ornstein-Ulhenbeck

dXt = −Xt +
√
2dBt .

For any t ≥ 0, L(Xt) has the same distribution as L(X̂t) where for any t ≥ 0

dX̂t = {−X̂t −∇ log pt(X̂t)}dt .

The backward of this deterministic dynamics is (Ŷt)t∈[0,T] given by

dŶt = {Ŷt +∇ log pT−t(Ŷt)}dt .

Comparing (Yt)t∈[0,T] and (Ŷt)t∈[0,T]

▶ (Yt)t∈[0,T] is stochastic and (Ŷt)t∈[0,T] is deterministic.
▶ Both are given by the time-reversal of a forward dynamics.
▶ They both approximate the data distribution at time t = T .
▶ Notice the difference of a factor two in the drift!

16 / 50

Stochastic and deterministic trajectories

Recall that the forward Ornstein-Ulhenbeck is given by

dXt = −Xt +
√
2dBt .

Its deterministic counterpart is given by

dX̂t = {−X̂t −∇ log pt(X̂t)}dt .

By the Fokker-Planck equation (and its uniqueness) we have that for any
t ≥ 0, L(Xt) = L(X̂t).

Is this property still true for the backward dynamics (Yt)t∈[0,T] and
(Ŷt)t∈[0,T]?

Both dynamics are started at L(Y0) = L(Ŷ0). The question is then: do the
distributions (L(Yt))t∈[0,T] and (L(Ŷt))t∈[0,T] follow the same dynamics?

We are going to compute the associated Fokker-Planck evolution equations.

17 / 50

Fokker-Planck of the stochastic backward dynamics

Recall that the stochastic time-reversal is given by

dYt = {Yt + 2∇ log pT−t(Yt)}dt +
√
2dBt .

Denote (qt)t∈[0,T] the distribution of (Yt)t∈[0,T].

We have the following evolution equation

∂tqt(x) = −div(qt(x){x + 2∇ log pT−t(x)}) + ∆qt

= −div(qt(x){x + 2∇ log pT−t(x)−∇ log qt(x)}) .

Recall that the deterministic time-reversal is given by

dŶt = {Ŷt +∇ log pT−t(Ŷt)}dt .

Denote (q̂t)t∈[0,T] the distribution of (Ŷt)t∈[0,T].

We have the following evolution equation

∂t q̂t = −div(q̂t(x){x +∇ log pT−t(x)}) .

The evolutions are equal if pT−t = qt = q̂t , i.e. L(Y0) = L(Ŷ0) = L(XT).

Hence as T → +∞ the two dynamics get closer, see De Bortoli et al. (2022).
18 / 50

Difference between stochastic and deterministic dynamics

We have a stochastic and a deterministic representation of L(Xt) where for
any t ≥ 0

dXt = −Xt +
√
2dBt .

Are the dynamics the same? The answer is no. They can be really different.

An example:

▶ L(X0) = N(m, Id) with m ∈ Rd .
▶ Xt = e−tX0 + B1−e−2t , pt = N(e−tm, Id)

▶ Recall that the deterministic dynamics is given by

dX̂t = {−X̂t −∇ log pt(X̂t)}dt = {−X̂t + X̂t −me−t}dt = −me−tdt .

▶ X̂t = X0 −m(1− e−t).
▶ No forgetting of the initial condition with the deterministic dynamics.
▶ Khrulkov and Oseledets (2022) show that the deterministic dynamics yield the
optimal transport between the Gaussian distributions.

19 / 50

Interpolation with normalizing flows

Having a deterministic model is useful for:
▶ Likelihood computation
▶ Interpolation
▶ Temperature scaling

We can explore the latent structure.

Figure 2: Interpolation with ODE. Image extracted from Song et al. (2021).

20 / 50

Temperature scaling with normalizing flows

Figure 3: Temperature scaling with ODE Image extracted from Song et al. (2021).
21 / 50

Faster diffusion models

Few-step sampling: a well-known problem

For high-quality image sampling vanilla diffusion models are notably slow.

22 / 50

A myriad of methods

A bunch of approaches have been proposed to solve this problem:

▶ Denoising Diffusion Implicit Models (DDIM) Song et al. (2020).
▶ Discovering the stepsizesWatson et al. (2022, 2021).
▶ Knowledge distillation Luhman and Luhman (2021); Salimans and Ho (2022).
▶ Improved SDE solvers Jolicoeur-Martineau et al. (2021); Liu et al. (2022).
▶ Non-Gaussian diffusions Nachmani et al. (2021).
▶ Multiscale denoising Saharia et al. (2021).
▶ GAN jumps Xiao et al. (2021).

We present two of these approaches:

▶ DDIM and subsampling Song et al. (2020).
▶ Discovering the stepsize and dynamic programmingWatson et al. (2021).

23 / 50

Non-Markov models and subsampling

24 / 50

From DDPM to DDIM

DDIM (Denoising Diffusion Implicit Model) is based on DDPM (Denoising
Diffusion Probabilistic Model).

Both are based on the variational approach to recover diffusion models.

The contributions of DDIM:

▶ A non-Markov noising process (interpolating between deterministic
and stochastic dynamics).

▶ An accelerated variational formulation.
▶ Combining these techniques lead to high-quality accelerated models.

Figure 4: DDPM/DDIM comparison. Image extracted from Song et al. (2020).

25 / 50

Recap on DDPM (1/2)

We start by deriving an ELBO for the score-based generative models. Note
that such a derivation was already obtained by Sohl-Dickstein et al. (2015).
Similar to VAE we maximize the log-likelihood

log(pθ,0(x0)) = log(
∫
(Rd)N

∏N−1
k=0 pθ,k|k+1(xk|xk+1)pN (xN)dx1:N)

= log(
∫
(Rd)N

∏N−1
k=0 pθ,k|k+1(xk|xk+1)pN (xN)/q(x1:N |x0)q(x1:N |x0)dx1:N)

≥
∫
(Rd)N

log(
∏N−1

k=0 pθ,k|k+1(xk|xk+1)pN (xN)/q(x1:N |x0))q(x1:N |x0)dx1:N .

The last inequality is obtained the concavity of the logarithm.
We now choose the variational distribution q(x1:N |x0):
▶ Factorization q(x1:N |x0) = qN |0(xN |X0)

∏N−1
k=1 qk|k+1,0(xk|xk+1, x0).

▶ Tractability of qk|k+1,0.
▶ We choose a tractable (Gaussian) decomposition
q(x1:N |x0) =

∏N−1
k=0 qk+1|k(xk+1|xk).

Here, we consider

qk+1|k(xk+1|xk) = (4πγ)−d/2 exp[−∥xk+1 − xk + γxk∥2/(4γ)] .

This is a slightly different discretization from the one of Ho et al. (2020).
26 / 50

Recap on DDPM (2/2)

Recall that we have log(pθ,0(x0)) ≥ L with

L =
∫
(Rd)N

log(
∏N−1

k=0 pθ,k|k+1(xk|xk+1)pN (xN)/q(x1:N |x0))q(x1:N |x0)dx1:N .

We use the backward decomposition of q(x1:N |x0) and we get

L = LN +
∑N−1

k=1 Lk + L0 ,

with:

▶ LN =
∫
Rd log(pN (xN)/q(xN |x0))qN |0(xN |x0)dxN .

▶ Lk =
∫
Rd log(pθ,k|k+1(xk|xk+1)/qk|k+1,0(xk|xk+1, x0))qk,k+1|0(xk, xk+1|x0)dxk .

▶ L0 =
∫
Rd log(pθ,0|1(x0|x1))q1|0(x1|x0)dx1.

The different terms:

▶ LN does not depend on θ.
▶ Lk is related to score-matching.
▶ L0 is a reconstruction term.

27 / 50

Minimal requirements on the noising distribution

We have log(pθ,0(x0)) ≥ L with

L =
∫
(Rd)N

log(
∏N−1

k=0 pθ,k|k+1(xk|xk+1)pN (xN)/q(x1:N |x0))q(x1:N |x0)dx1:N .

We use the backward decomposition of q(x1:N |x0) and we get

L = LN +
∑N−1

k=1 Lk + L0 ,

with:

▶ LN =
∫
Rd log(pN (xN)/q(xN |x0))qN |0(xN |x0)dxN .

▶ Lk =
∫
Rd log(pθ,k|k+1(xk|xk+1)/qk|k+1,0(xk|xk+1, x0))qk,k+1|0(xk, xk+1|x0)dxk .

▶ L0 =
∫
Rd log(pθ,0|1(x0|x1))q1|0(x1|x0)dx1.

What do we need on the variational distribution q(x1:N |x0)?
▶ Sampling: qk|0 is an easy-to-sample distribution.
▶ Tractability of qk|k+1,0.

In DDPM we choose q by specifying Gaussian transition (discretization of the
Ornstein-Ulhenbeck process) for qk+1|k .

28 / 50

From DDPM to DDIM

In DDPM we choose q by specifying Gaussian transition (discretization of
the Ornstein-Ulhenbeck process) for qk+1|k .

This choice specifies qk|0 (because qk+1|k is Gaussian with linear mean).

Therefore we have
qk|k+1,0(xk|xk+1, x0) = qk+1|k(xk+1|xk)qk|0(xk|x0)/qk+1|0(xk+1|x0).

In DDIM we choose a different approach.

▶ We specify qk|k+1,0(xk|xk+1, x0) = N(Ckxk+1 + Dkx0, σ̄2
k).

▶ {σ̄k}N−1
k=1 will be fixed by the user.

▶ The parameters {Ck}N−1
k=1 , {Dk}N−1

k=1 are chosen such that
qk|0 = N(αkx0, σ2

k).

The parameters {αk}N−1
k=0 and {σk}N−1

k=0 match the ones of DPPM.

We present here a derivation of DDIM inspired from Song et al. (2020).

29 / 50

DDIM derivation (1/2)

We assume that there exist Ck,Dk, σ̄k ≥ 0 such that

qk|k+1,0(xk|xk+1, x0) ∝ exp[−∥xk − (Ckxk+1 + Dkx0)∥2/(2σ̄2
k)] .

We assume that qN |0(xN |x0) = N(αNx0, σ2
N).

We are going to proceed by recursion. We assume that for any
j ∈ {k + 1, . . . ,N}, qj|0(xj|x0) = N(αjx0, σ2

j).

Question: what conditions on Ck,Dk, σ̄k should we impose so that
qk|0 = N(αkx0, σ2

k)?

We are going to use that for any xk ∈ Rd

qk|0(xk|x0) =
∫
Rd qk|k+1,0(xk|xk+1, x0)qk+1|0(xk+1|x0)dxk+1 .

▶ Computing the integral.
▶ Finding the parameter of the resulting Gaussian.

30 / 50

DDIM derivation (2/2)

We have the following:
▶ Xk = CkXk+1 + DkX0 + σ̄kZ̄k ,
▶ Xk+1 = αk+1X0 + σk+1Zk+1.
▶ With Z̄k,Zk+1 ∼ N(0, Id) independent.

Hence, we get that

Xk = (Ckαk+1 + Dk)X0 + σ̄kZ̄k + Ckσk+1Zk+1

= (Ckαk+1 + Dk)X0 + (σ̄2
k + C2

kσ
2
k+1)

1/2Zk .

Therefore, we obtain the following parameters:
▶ αk = Ckαk+1 + Dk .
▶ σ2

k = σ̄2
k + C2

kσ
2
k+1.

▶ Solving the system: setting σ̄k implies setting Ck implies setting Dk .
▶ Choosing σ̄k = (α2

k+1|k/σ
2
k+1|k + (1/σ2

k))
−1 gives DDPM.

Recall that the discretized Ornstein-Ulhenbeck gives
▶ αk = (1− γ)k .
▶ σ2

k = (1− (1− γ)2k)/(1− γ/2).
31 / 50

Choice of the parameters

Recall that we have:

▶ αk = Ckαk+1 + Dk .
▶ σ2

k = σ̄2
k + C2

kσ
2
k+1.

▶ Solving the system: setting σ̄k implies setting Ck implies setting Dk .
▶ Choosing σ̄k = (α2

k+1|k/σ
2
k+1|k + (1/σ2

k))
−1 gives DDPM.

We can choose σ̄k arbitrary small.

Choosing σ̄k → 0, we get Denoising Diffusion Iimplicit Models (DDIM).

We end up with a deterministic model.

▶ Recall that when we train the model we estimate X0, i.e.
tθ(k + 1,Xk+1) ≈ X0.

▶ The recursion at sampling times is then given by

Xk = CkXk+1 + tθ(k + 1,Xk+1) + σ̄kZ̄k .

32 / 50

Interpolation with DDIM

An alternative to normalizing flows.

Like any deterministic method we can interpolate.

Figure 5: DDIM interpolation. Image extracted from Song et al. (2020).

33 / 50

Subsampling with DDIM

Chain model: (classical DDIM/DDPM)

x1 x2 x3 x4 x5 x6 x7

x0

Star graph model: (multiple encoder/decoder)

x1 x2 x3 x4 x5 x6 x7

x0

Subsampled model:

x1 x2 x3 x4 x5 x6 x7

x0

34 / 50

Subsampled model

In the chain model we parameterize q(x1:N |x0) by

q(x1:N |x0) = qN (xN |x0)
∏N−1

k=1 qk|k+1,0(xk|xk+1, x0) .

The backward chain pθ(x0:N) is then given by

pθ(x0:N) = p(xN)
∏N−1

k=0 pθ,k|k+1(xk|xk+1) .

In the subsampled model we parameterize q(x1:N |x0) by

q(x1:N |x0) =
∏M−1

i=1 qki|ki+1,0(xki |xki+1 , x0)
∏

k∈N\M qk|0(xk|x0) ,

whereN = {0, . . . ,N − 1} andM = {k1, . . . , kM−1} with kM = N

The backward chain pθ(x0:N) is then given by

pθ(x0:N) = p(xN)
∏M−1

i=1 pθ,ki|ki+1(xki |xki+1)
∏

k∈N\M p̃θ,0|k(x0|xk) .

35 / 50

Susbsampled ELBO

The backward chain pθ(x0:N) is then given by

pθ(x0:N) = p(xN)
∏M−1

i=1 pθ,ki|ki+1(xki |xki+1)
∏

k∈N\M p̃θ,0|k(x0|xk) .

Recall that log(pθ(x0)) ≥ L =
∫
(Rd)N

log(q(x1:N |x0)/pθ(x0:N))q(x1:N |x0)dx1:N .

We use the backward decomposition of q(x1:N |x0) and we get

L = LN +
∑M−1

i=1 Li +
∑

k∈N\M Lk ,

with:

▶ LN =
∫
Rd log(pN (xN)/q(xN |x0))qN |0(xN |x0)dxN .

▶ The backward terms:
Li =

∫
Rd log(pθ,ki|ki+1(xki |xki+1)/qki|ki+1,0(xki |xki+1 , x0))qki,ki+1|0(xki , xki+1 |x0)dxki .

▶ The decoder terms: Lk =
∫
Rd log(p̃θ,0|k(x0|xk))qk|0(xk|x0)dxk .

36 / 50

DDIM results

Figure 6: DDIM results. Image extracted from Song et al. (2020).

37 / 50

Dynamic programming and stepsize selection

38 / 50

Choosing the stepsizes

Given a sequence of steps T = {t0 = 0, t1, . . . , tN = T} and a budget of K
steps which subsampled sequence is the best?

The “best” in a variational sense.

We recall that in the variational setting we set
pθ⋆,ti|ti+1(xti |xti+1) = qti|ti+1,0(xti |xti+1 , tθ⋆(ti+1, xti+1)).

tθ⋆(ti+1, ·) is trained with the loss

ℓti+1(θ) = E[∥tθ(ti+1,Xti+1)− X0∥2] .

Take-home message: all pθ⋆,ti|ti+1(xti |xti+1) with ti < ti+1 can be computed
using tθ⋆(ti+1, xti+1).

x0 xt1 xt2 xt3 xt4 xt5 xT

39 / 50

Choosing the best subsample

Given a subsample tk0 = 0 < tk1 < · · · < tkK = T (K = {tk0 , . . . , tkK }) we have
a variational lower bound

LK = LT +
∑K−1

i=1 Ltki+1 ,tki
+ Ltk1 ,0 .

where:

▶ LT =
∫
Rd log(pT (xT)/qT|0(xT |x0))q(xT |x0)dxT .

▶ Ltki+1 ,tki
=

∫
Rd log(pθ,tki |tki+1

(xtki |xtki+1
)/q(xtki |xtki+1

, x0))q(xtki |xtki+1
, x0)dxtki .

▶ Ltk1 ,0 =
∫
Rd log(pθ,0,tk1 (x0|xtk1))q(xtk1 |x0)dxtk1 .

To compute {Lt,s : s, t ∈ T , s < t}, we only need T forward call to the
network tθ⋆ .

A budget of K steps, which subsample LK yields the higher variational
bound?

If |K| ≪ |T | then sampling time is heavily reduced.

40 / 50

Dynamic programming

Create matrices C ∈ RK+1×N+1, D ∈ RK+1×N+1 (recall that |K| = K + 1 and
|T | = N + 1)

where:

▶ C(m, n) is theminimal cost to reach tn−1 in m steps, i.e.

C(m, n) = min{
∑m−1

i=1 Ltki+1 ,tki
+ Ltk1 ,0 : K = {tk0 = 0, . . . , tkm = tn−1}} .

▶ D(m, n) = km−1 in the decomposition K = {tk0 = 0, tk1 , . . . , tkm−1 , tkm = tn}
which minimizes the previous cost.

We can fill the lines recursively using that

C(m, n) = min{C(m− 1, ℓ) + Ltn,tℓ : ℓ ∈ {0, . . . ,N}, ℓ < n} ,

D(m, n) = argmin{C(m− 1, ℓ) + Ltn,tℓ : ℓ ∈ {0, . . . ,N}, ℓ < n} .

Then, the optimal decomposition is given by K = {tk0 , . . . , tkK }, where for
any i ∈ {0, . . . ,K − 1}, kK−1−i = D(K − i, kK−i), with kK = N .

This is a dynamic programming (bottom-up) procedure Dijkstra et al. (1959).

41 / 50

An illustration of the bottom-up procedure

42 / 50

Subsampling results

Running the dynamic program we find the following decomposition

Figure 7: Budget of stepsizes. Image extracted from Watson et al. (2021).

Consequences:

▶ More stepsize near the data distribution.
▶ Larger stepsizes near the easy-to-sample distribution.

43 / 50

Limitations and Extensions

Optimizing the ELBO does not always correlate with better FID.

Figure 8: Top and middle are samples (Imagenet) obtained using preset stride
strategies. Bottom is the discovering strategy from Watson et al. (2021). Image
extracted from Watson et al. (2021).

Improvement Watson et al. (2022) by differentiating through sample quality
(Differentiable Diffusion Sampler Search).

Differenciation through the sampling process. DDSS optimize the Kernel
Inception Distance Bińkowski et al. (2018).

44 / 50

Knowledge distillation

45 / 50

Teacher/Student and progressive distillation

First train a teacher diffusion model. Then train a student diffusion model.

We follow Salimans and Ho (2022)

Figure 9: Progressive distillation. Image extracted from Salimans and Ho (2022).

46 / 50

Progressive distillation algorithm

Figure 10: Progressive distillation algorithm. Image extracted from Salimans and
Ho (2022).

47 / 50

Some results

Figure 11: From 256 to 1 sampling steps. Image extracted from Salimans and Ho
(2022).

48 / 50

Some extensions

Figure 12: Distillation for guided model. Image extracted from Meng et al. (2022).

Other distillation methods Luhman and Luhman (2021); Meng et al. (2022);
Song et al. (2023).

49 / 50

Conclusion

Conclusion

We have introduced diffusion models.

▶ diffusion models in continuous time and results.
▶ Normalizing flows and Likelihood computation.
▶ Acceleration of diffusion models.

50 / 50

References i

References

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes
and their Applications, 12(3):313–326, 1982.

Dominique Bakry, Ivan Gentil, Michel Ledoux, et al. Analysis and geometry of
Markov diffusion operators, volume 103. Springer, 2014.

Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton.
Demystifying mmd gans. arXiv preprint arXiv:1801.01401, 2018.

Patrick Cattiaux, Giovanni Conforti, Ivan Gentil, and Christian Léonard. Time
reversal of diffusion processes under a finite entropy condition. arXiv preprint
arXiv:2104.07708, 2021.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score
approximation, estimation and distribution recovery of diffusion models on
low-dimensional data. arXiv preprint arXiv:2302.07194, 2023.

51 / 50

References ii

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. Advances in neural information processing
systems, 31, 2018.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang.
Sampling is as easy as learning the score: theory for diffusion models with
minimal data assumptions. arXiv preprint arXiv:2209.11215, 2022.

Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth
and log-concave densities. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 79(3):651–676, 2017.

Valentin De Bortoli. Convergence of denoising diffusion models under the manifold
hypothesis. arXiv preprint arXiv:2208.05314, 2022.

Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton,
Yee Whye Teh, and Arnaud Doucet. Riemannian score-based generative
modeling. NeurIPS, 2022.

Edsger W Dijkstra et al. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

52 / 50

References iii

Alain Durmus and Éric Moulines. Nonasymptotic convergence analysis for the
unadjusted Langevin algorithm. Ann. Appl. Probab., 27(3):1551–1587, 2017. ISSN
1050-5164. doi: 10.1214/16-AAP1238. URL
https://doi.org/10.1214/16-AAP1238.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David
Duvenaud. Ffjord: Free-form continuous dynamics for scalable reversible
generative models. arXiv preprint arXiv:1810.01367, 2018.

Ulrich G Haussmann and Etienne Pardoux. Time reversal of diffusions. The Annals
of Probability, pages 1188–1205, 1986.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. Advances in Neural Information Processing Systems, 33:6840–6851, 2020.

Nobuyuki Ikeda and Shinzo Watanabe. Stochastic differential equations and diffusion
processes. Elsevier, 2014.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis
Mitliagkas. Gotta go fast when generating data with score-based models. arXiv
preprint arXiv:2105.14080, 2021.

53 / 50

https://doi.org/10.1214/16-AAP1238

References iv

Valentin Khrulkov and Ivan Oseledets. Understanding ddpm latent codes through
optimal transport, 2022.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative
modeling with polynomial complexity. arXiv preprint arXiv:2206.06227, 2022.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for
diffusion models on manifolds, 2022.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative
models for improved sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Chenlin Meng, Ruiqi Gao, Diederik P Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. arXiv preprint
arXiv:2210.03142, 2022.

Eliya Nachmani, Robin San Roman, and Lior Wolf. Non gaussian denoising
diffusion models. arXiv preprint arXiv:2106.07582, 2021.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and
Mohammad Norouzi. Image super-resolution via iterative refinement. arXiv
preprint arXiv:2104.07636, 2021.

54 / 50

References v

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of
diffusion models. arXiv preprint arXiv:2202.00512, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
Deep unsupervised learning using nonequilibrium thermodynamics. In ICML,
2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit
models. arXiv preprint arXiv:2010.02502, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano
Ermon, and Ben Poole. Score-based generative modeling through stochastic
differential equations. ICLR, 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models.
2023. doi: 10.48550/ARXIV.2303.01469. URL
https://arxiv.org/abs/2303.01469.

Daniel W Stroock and SR Srinivasa Varadhan. Multidimensional diffusion processes,
volume 233. Springer Science & Business Media, 1997.

55 / 50

https://arxiv.org/abs/2303.01469

References vi

Daniel Watson, Jonathan Ho, Mohammad Norouzi, and William Chan. Learning to
efficiently sample from diffusion probabilistic models. arXiv preprint
arXiv:2106.03802, 2021.

Daniel Watson, William Chan, Jonathan Ho, and Mohammad Norouzi. Learning fast
samplers for diffusion models by differentiating through sample quality, 2022.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning
trilemma with denoising diffusion gans. arXiv preprint arXiv:2112.07804, 2021.

56 / 50

	Continuous diffusion models
	Likelihood computation and continuous normalizing flows
	Faster diffusion models
	Conclusion
	References

