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Summary of the previous lecture (1/4)

In the previous lecture we developed some theory for score-based
generative modeling:
▶ Continuous time-reversal.
▶ Approximation theorem.
▶ Connection with Normalizing Flows.
▶ Accelerations of SGMs.

Recall the basics of SGM:
▶ Sample a forward trajectory, noising the distribution.

Xk+1 = Xk − γXk +
√

2γZk+1 .

▶ Sample a backward trajectory via ancestral sampling.

Xk = Xk+1 + γ{Xk+1 + sθ(kγ,Xk+1)}+
√

2γZk+1 .

▶ Backward sampling relies on learning the score (score-matching)

sθ⋆(kγ, ·) = argmin
θ

{E[∥sθ(kγ,Xk)−∇ log pk|0(Xk|X0)∥2] : f ∈ L2(pk)} .
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Summary of the previous lecture (2/4)

Convergence of diffusion models (De Bortoli et al., 2021)

Assume there exists M ≥ 0 such that for any t ∈ [0, T ] and x ∈ Rd

||sθ⋆(t, x)−∇ log pt(x)|| ≤ M ,

with sθ⋆ ∈ C([0, T ] × Rd ,Rd) and regularity conditions on the density of π
w.r.t. the Lebesgue measure and its gradients.

Then there exist B,C,D ≥ 0 s.t. for any N ∈ N and {γk}Nk=1 the following
hold:

∥L(YN )− π∥TV ≤ B exp[−T ] + C(M + γ1/2) exp[DT ] .

where T = Nγ.

A few remarks:
▶ The assumption on π is not satisfied if π defined on amanifold of Rd

with dimension p < d.
▶ The approximation assumption is strong and could be relaxed.
▶ The term exp[DT ] can be improved and turned into a polynomial

dependency.
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Summary of the previous lecture (3/4)

Having a deterministic model is useful for:
▶ Likelihood computation
▶ Interpolation
▶ Temperature scaling

We can explore the latent structure.

Figure 1: Interpolation with ODE. Image extracted from Song et al. (2021).
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Summary of the previous lecture (4/4)

For high-quality image sampling vanilla SGMs are notably slow.
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Outline of the course

We study diffusion models in the setting of inverse problems.
Goal of the course:
▶ Present techniques to solve inverse problems in our framework.
▶ Present an end-to-end text-to-image model.

Outline of the course
▶ Techniques and tricks in inverse problem diffusion models.
▶ Deep-dive in Imagen.

Figure 2: Some outputs of the Imagen model Saharia et al. (2022). 6 / 39



Inverse problems and diffusion
models



Illustrative example: astronomical image reconstruction

Recover x ∈ Rd from low-dimensional degraded observation

y = MFx + w,

F is the continuous Fourier transform, M ∈ Cm×d is a measurement mask
operator, and w is Gaussian noise. We use the model

p(x|y) ∝ exp
(
−∥y −MFx∥2/2σ2 − θ∥Ψx∥1

)
1Rn

+
(x).

Now, with a diffusion model prior!

Figure 3: Radio-interferometric image reconstruction of the W28 supernova.
Credit to Marcelo Pereyra. Left: ∥y∥, Right: x̂MAP . 7 / 39



Diffusion models for inverse problems

Question: how to use denoising diffusion models for inverse problems?
We present several techniques:
▶ Amortization
▶ Replacement (with or without correction)
▶ Conditional guidance
▶ Denoising Diffusion Restoration Models

Main applications:
▶ Inpainting, deblurring
▶ Class conditional generative modelling
▶ Text-to-image

Figure 4: Image extracted from Kawar et al. (2022). 8 / 39



Amortization

The simplest technique: amortize everything.

Score matching techniques: Vincent (2011); Hyvärinen (2005)

∇ log pk+1(xk+1|y) = Ep0|k+1,y [∇ log pk+1|0(xk+1|X0)].

▶ Loss function:
ℓ(sk+1) = E[∥sk+1(Xk+1, Y)−∇ log pk+1|0(Xk+1|X0)∥2].

▶ Algorithm: replace∇ log pk+1 by sk+1.

Same algorithm as before but instead of sampling X0 and then noise it, sample
(X0, Y) and then noise it.

Advantages:

▶ Straightforward to implement (just another input to the network).
▶ Works for generic data.

Problems:

▶ What if I only want to train one generative model?
▶ What if at inference size y has a different size than the training samples?
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The replacement method

Second technique: replacement technique.
We only train one diffusion model.
Example of inpainting:
▶ Train a denoising diffusion model.
▶ At inference time, we observe part of the image (y with a mask m)
▶ Diffuse y forward in time Y0:N

▶ Sample XN ∼ N(0, Id)
▶ Apply the backward diffusion step:

X̂n = Xn+1 + γXn+1 + 2γsθ(Xn) +
√
2γZn

▶ Replace using Xn = mX̂n + (1−m)Yn (pointwise multiplication)
▶ Go back to the backward diffusion step and iterate.

Advantages:
▶ Only one generative model to train
▶ Straightforward to implement
▶ Very useful in protein modeling

Problems:
▶ Only work on specific problems (mask)
▶ No guarantee of convergence 10 / 39



A particle filtering point of view (1/2)

Our goal is to sample from p(x0:T |y0:T ) (where here y0:T is a forward
trajectory initialized at y).

Denote the set of target {πt}Nt=0 such that

πt = p(xt:T |yt:T ).

The replacement procedure:

▶ At time T we sample from p(xT ) ≈ p(xT |yT ) (independence).
▶ Then, at time t we sample from p(xt |xt+1, yt+1) (sample from

p(xt , yt |xt+1, yt+1) and discard yt ).
▶ But if we start from xt+1:T ∼ πt+1 then

xt:T ∼ p(xt |xt+1, yt+1)πt+1(xt+1:T )

= p(xt |xt+1, yt+1)p(xt+1:T |yt+1:T )

̸= πt(xt:T ) = p(xt:T |yt:T ).

▶ We have lost the information about yt .
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A particle filtering point of view (2/2)

We have the following proposal

xt ∼ p(xt |xt+1, yt+1).

The extended proposal is p(xt |xt+1, yt+1)πt+1:T (xt+1:T ) and we have

πt:T/[p(xt |xt+1, yt+1)πt+1:T (xt+1:T )] = p(xt , yt |xt+1, yt+1)/p(xt |xt+1, yt+1).

This quantifies themismatch in the proposal.

A simplification

p(xt , yt |xt+1, yt+1)/p(xt |xt+1, yt+1) = p(yt |xt , yt+1, xt+1).

In amasked model we have xt ⊥ yt conditionally to xt+1, yt+1 and therefore

πt:T/[p(xt |xt+1, yt+1)πt+1:T (xt+1:T )] = p(yt |xt+1, yt+1).

Therefore, we need to reweight by p(yt |xt+1, yt+1).
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SMC-Diff method

This procedure of proposal/reweighting is called Particle Filtering,
Doucet et al. (2009).

▶ Many applications in statistics (optimal estimation problems).
▶ Bayesian filtering methods: Kalman Filter, Extended Kalman Filter.

The complete methodology:

▶ Diffuse y (forward) and get the trajectory y0:T
▶ Start with N particles distributed according to p(xT )⊗k

▶ Update the N particles according to p(xkt |xkt+1, yt+1) for each
k ∈ {1, . . . ,N} (independently).

▶ Resample the N particles with weight proportional to
{p(yt |xkt+1, yt+1)}Nk=1

Procedure described in Trippe et al. (2022) (SMC-Diff).

One potential drawback: scaling with the dimension.
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Iterative replacement method

Figure extracted from Lugmayr et al. (2022)

Another trick:

▶ Iterating the replacement step Lugmayr et al. (2022) (Repaint)
▶ Claim that it increases the dependency between the context and the

generation.
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Iterative replacement: algorithm

At step t and observation y0
▶ Sample from p(y1:T |y0)
▶ Sample from p(xt |xt+1, yt+1)

▶ Sample from p(xt+1|xt) (NEW)
▶ Repeat the operation L times (NEW)

The information between xt and yt is mixed multiple times per time step.

Figure 5: Image extracted from Lugmayr et al. (2022).
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Explicit guidance

Third technique: conditional guidance
Just guide the diffusion with an extra term in the drift

sθ(x) → sθ(x) + ω∇ log pϕ(y|x)

▶ ω is the guidance strength.
What is pϕ?
▶ Classifier in the case of class conditional sampling Dhariwal and

Nichol (2021).
▶ Can be an amortized score model, i.e. (classifier free, Ho and Salimans

(2022))∇ log pϕ(y|x) → sθ(x, y)− sθ(x)
▶ Push the samples towards p(x|y) and away from p(x).

Figure 6: Increasing amount of guidance on the class “malamute” in
ImageNet. Image extracted from Ho and Salimans (2022). 16 / 39



Denoising Diffusion Restoration Model

For linear models: Denoising Diffusion Restoration Models
▶ We assume an observation model of the form y = {yi}Ni=1,

yi = x0 + σi
yZi , Zi i.i.d. Gaussian (we drop the index i for simplicity).

▶ Works for more general linear inverse problems using the SVD
decomposition.

Take a modified DDPM approach.
Goal: do not learn a new model (no need to retrain).

Figure 7: Image extracted from Kawar et al. (2022). 17 / 39



The perturbation model

In a DDPM “like” model 1

q(xt |xt+1, x0) = N(xt ; x0 + (1−η2)1/2σt
σt+1

(xt+1 − x0), ησt),

q(xT |x0) = N(xT ; x0, σT ).

Property: for every t ∈ {1, . . . , T}, q(xt |x0) = N(xt ; x0, σt) .
We consider the following DDRM model

q(xt |xt+1, x0, y) =


N(xt , x0 + (1−η2)1/2σt

σt+1
(xt+1 − x0), ησt) if σy = +∞

N(xt , x0 + (1−η2)1/2σt
σy

(y − x0), ησt) if σt ≤ σy

N(xt , (1− ηb)x0 + ηby, (σ2
t − ηbσ

2
y)

1/2) if σt ≥ σy

q(xT |x0) =

{
N(xT , x0, σT ) if σT ≤ σy

N(xT , y, (σ2
T − σ2

y)) if σT ≥ σy

Hyperparameters (similar to Song et al. (2020)):
▶ η, before σt ≤ σy

▶ ηb after σt ≥ σy

Property: for every t ∈ {1, . . . , T}, q(xt |x0) = N(xt ; x0, σt) .
1Original DDPM is a discretization of the Ornstein-Uhlenbeck so you won’t find these
equations in Ho et al. (2020). 18 / 39



Properties of the forward model

Recall that

q(xt |xt+1, x0, y) =


N(xt , x0 + (1−η2)1/2σt

σt+1
(xt+1 − x0), ησt) if σy = +∞

N(xt , x0 + (1−η2)1/2σt
σy

(y − x0), ησt) if σt ≤ σy

N(xt , (1− ηb)x0 + ηby, (σ2
t − ηbσ

2
y)

1/2) if σt ≥ σy

q(xT |x0) =

{
N(xT , x0, σT ) if σT ≤ σy

N(xT , y, (σ2
T − σ2

y)) if σT ≥ σy

Practical case: η = 1, ηb = 1

▶ When the noise level σt ≤ σy we rely on x0.
▶ When the noise level σt ≤ σy we rely on y.

DDPM case: η = 1, ηb = 2σ2
t /(σ

2
t + σ2

y)

▶ We recover a DDPM loss.
▶ The last equation is only valid if ηb ≤ σ2

t /σ
2
y (in general), with that value

of ηb it implies that σt ≥ σy .
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The backward model

As in DDPM:

pθ(xt |xt+1, y) =


N(xt , x̂0 + (1−η2)1/2σt

σt+1
(xt+1 − x̂0), ησt) if σy = +∞

N(xt , x̂0 + (1−η2)1/2σt
σy

(y − x̂0), ησt) if σt ≤ σy

N(xt , (1− ηb)x̂0 + ηby, (σ2
t − ηbσ

2
y)

1/2) if σt ≥ σy

q(xT |x0) =

{
N(xT , 0, σT ) if σT ≤ σy

N(xT , y, (σ2
T − σ2

y)) if σT ≥ σy

q(xT |x0) = q(xT ) (approximately valid if σT ≫ 1).
x̂0 is the prediction of a generative model (like DDPM).

Figure 8: Image extracted from Kawar et al. (2022). 20 / 39



Deep Dive into Imagen



Text-to-image synthesis

Figure 9: Image extracted from Saharia et al. (2022). 21 / 39



A brief history of text-to-image models

1.5+ year of progress:
▶ DALLE Ramesh et al. (2021) (24 February 2021)
▶ VQ-Diffusion Gu et al. (2022) (29 November 2021)
▶ Glide Nichol et al. (2021) (20 December 2021)
▶ Stable Diffusion Rombach et al. (2022) (20 December 2021)
▶ MidJourney Midjourney (2022) (14 March 2022)
▶ DALLE2 Ramesh et al. (2022) (13 April 2022)
▶ VQ-GAN Crowson et al. (2022) (18 April 2022)
▶ Imagen Saharia et al. (2022) (23 May 2022)
▶ E-DIff Balaji et al. (2022) (2 November 2022)

Earlier work using GAN approaches (see references in Gu et al. (2022)).
A first comparison between models Borji (2022).

Figure 10: Image extracted from Saharia et al. (2022). 22 / 39



Overview of the model

Figure 11: Image extracted from Saharia et al. (2022).
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Structure of the section

Presentation of Imagen Saharia et al. (2022):
▶ Text-encoder
▶ Sampler: conditional guidance and dynamic thresholding
▶ Cascaded Diffusion Models
▶ Architecture (Efficient U-Net)
▶ Qualitative and quantitative results

Figure 12: Image extracted from Saharia et al. (2022).
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Text-to-Text Transfer Transformer

T5: Text-to-Text Transfer Transformer Raffel et al. (2020)
▶ Based on the Transformer Architecture Vaswani et al. (2017)
▶ Checkpoint and model available at

https://huggingface.co/docs/transformers/model_doc/t5

Figure 13: Image extracted from the “Illustrated Transformer” blogpost by Jay
Alammar.

Trained on amulti-task mixture (each task is text-to-text). Examples:
translation, summarization...

25 / 39
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Contrastive Language-Image Pre-Training

CLIP: Contrastive Language-Image Pre-Training Radford et al. (2021)
▶ Task: predicting which caption goes with which image.
▶ Good text/image representation

Figure 14: Image extracted from Radford et al. (2021).
26 / 39



Contrastive learning

The training procedure:
▶ We have N (batch) pairs of text/image
▶ We get the image embedding Ie ∈ RN×de (N is the size of the batch)
▶ We get the text embedding Te ∈ RN×de (N is the size of the batch)
▶ We compute the L = TeI⊤e ∈ RN×N

We compute the cross-entropy loss for text and image
▶ {wT

i,j}Ni,j=1 = {Li,j/
∑N

k=1 Li,k}
N
i,j=1, ℓT =

∑N
i=1 log(w

T
i,i)

▶ {wI
i,j}Ni,j=1 = {Li,j/

∑N
k=1 Lk,j}

N
i,j=1, ℓI =

∑N
i=1 log(w

I
i,i)

▶ Final loss ℓ = ℓI + ℓT

Figure 15: Image extracted from Radford et al. (2021).

Reminiscent of contrastive learning in unsupervised learning.
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Explicit guidance

Recall the conditional guidance technique
Just guide the diffusion with an extra term in the drift

sθ(x) → sθ(x) + ω∇ log pϕ(y|x)

▶ ω is the guidance strength.
What is pϕ?
▶ Classifier in the case of class conditional sampling Dhariwal and

Nichol (2021).
▶ Can be an amortized score model, i.e. (classifier free, Ho and Salimans

(2022))∇ log pϕ(y|x) → sθ(x, y)− sθ(x)
▶ Push the samples towards p(x|y) and away from p(x).

Figure 16: Increasing amount of guidance on the class “malamute” in
ImageNet. Image extracted from Ho and Salimans (2022). 28 / 39



Classifier-free guidance

Figure 17: Training of the classifier free guidance model. Image extracted from Ho
and Salimans (2022)

puncond is usually set to 0.2.
▶ Small portion of training dedicated to unconditional model.
▶ Guidance strength: interpolation between diversity and fidelity.

Figure 18: Image extracted from Ho and Salimans (2022)
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Dynamic thresholding

In Saharia et al. (2022):
▶ Classifier-free guidance
▶ Score is amortized w.r.t. the text embedding

Classifier-free outputs with strong guidance are saturated. Solution:
thresholding (at sampling time)
▶ Static thresholding: project the update in the range [−1, 1].
▶ Dynamic thresholding: project the update in the range. Set s to a

percentile absolute pixel value.Threshold to the range [−s, s] if s ≥ 1 and
divide by s.

Figure 19: Image extracted from Saharia et al. (2022). 30 / 39



Cascaded Diffusion Models

Cascading for diffusion models was introduced in Ho et al. (2022)

Figure 20: Image extracted from Ho et al. (2022).

Useful technique in generative modeling Menick and Kalchbrenner (2018);
Razavi et al. (2019). Below z is an upsampled version of the previous

Figure 21: Image extracted from Ho et al. (2022). 31 / 39



Gaussian and truncated conditioning

It is beneficial to condition on a noisy version of the low-resolution image.

▶ Strategy 1: Gaussian conditioning
▶ Strategy 2: Truncated conditioning

Figure 22: Image extracted from Ho et al. (2022).
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Positional encoding

The time is one-dimensional. We create a feature vector associated with it.

This is like a continuous version of the one-hot encoding.
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Resnet block
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Skip connection

In the U-Net architecture a key component is the skip connection.

Recover information lost during the downsampling.
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The Unet architecture

First introduced for biomedical image segmentation Ronneberger et al.
(2015).
Used in Ho et al. (2020); Song et al. (2021).
Putting everything together.
▶ Downsampling (Resnet block + time embedding)
▶ Upsampling (Resnet block + time embedding)
▶ Skip connections
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Importance of the text encoder

Pareto curve (CLIP score/FID score)

Sweep overmultiple guidance values from 1 to 10

Scaling the text encoder is more important than scaling the Unet

Classifier-free guidance with large weight
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Some failures

Figure 23: Image extracted from Saharia et al. (2022).
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GANs strike back

Recently: GigaGAN Kang et al. (2023)
▶ State-of-the-art on the COCO dataset (FID).
▶ Very fast generation (0.13s for a 512× 512 image).

Figure 24: Image extracted from Kang et al. (2023).
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