Inverse problems with diffusion models

Valentin De Bortoli
March 12, 2023

1/39



Summary of the previous lecture (1/4)

m In the previous lecture we developed some theory for score-based
generative modeling;:
» Continuous time-reversal.
» Approximation theorem.
» Connection with Normalizing Flows.
» Accelerations of SGMs.
m Recall the basics of SGM:

» Sample a forward trajectory, noising the distribution.

| Xets = X = 1%+ V2120 |

» Sample a backward trajectory via ancestral sampling.

’Xk = Xit1 + Y{ X1 + so(kv, Xe1)} + /27 Zk41 - ‘

» Backward sampling relies on learning the score (score-matching)

(57 ) = Evgmitn 2| o U520 = V log pijo (XelXo) 7] = f € L*(px)} -
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Summary of the previous lecture (2/4)

Assume there exists M > 0 such that for any ¢ € [0, T] and x € R?
|lso= (¢, x) = Vlog pi(x)|| < M,

with sg« € C([0, T] x RY R?) and regularity conditions on the density of 7
w.r.t. the Lebesgue measure and its gradients.

Then there exist B, C,D > 0 s.t. for any N € N and {y:}}_, the following
hold:

I£(¥x) = 7llrv < Bexp[—T] + C(M + v'/*) exp[DT] .

where T = N~.

m A few remarks:
» The assumption on 7 is not satisfied if 7 defined on a manifold of R?
with dimension p < d.
» The approximation assumption is strong and could be relaxed.
» The term exp[DT] can be improved and turned into a polynomial
dependency.
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Summary of the previous lecture (3/4)

m Having a deterministic model is useful for:
» Likelihood computation
> Interpolation
» Temperature scaling

m We can explore the latent structure.

Figure 1: Interpolation with ODE. Image extracted from Song et al. (2021).
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Summary of the previous lecture (4/4)

m For high-quality image sampling vanilla SGMs are notably slow.

S ] y Teq y 5 10 pi gh qualty
sample. For DDPMs, this is because that the generative process (from noise to data) approximates
the reverse of the forward diffusion process (from data to noise), which could have thousands of
steps; iterating over all the steps is required to produce a single sample, which is much slower
compared to GANs, which only needs one pass through a network. For example, it takes around 20

c generation sample.

CT OF denoising Steps 15

ple. 1o gl ality sy
used (i.e. 1000 steps). A notable property of the diffusion process is a closed-form formulation of
Tetwork). Although very powerTul, score-based models generate data through an undesirably Iong
iterative process; meanwhile, other state-of-the-art methods such as GANs generate data from a single
forward pass of a neural network. Increasing the speed of the generative process is thus an active area

of research,

‘denoises The samples under (he Tixed noise schedule. However, DDPMS olfen need hundreds-1o-
thousands of denoising steps (each involving a feedforward pass of a large neural network) to achieve

However, GANs are typically much more efficient than DDPMs at generation time, often requiring

a single forward pass through the generator network, whereas DDPMs require hundreds of forward
a U-Net model. Instead of learning a generator directl:

asses through , DDPMs learn to convert
A'major downside to score-based generative models is that they require performing expen-
sive MCMC sampling, often with a thousand steps or more. As a result, they can be up
to three orders of magnitude slower than GANs, which only require a single network eval-
uation. To address this issue, Denoising Diffusion Implicit Models, or DDIMs, have been

nal A
Normalizing F
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Outline of the course

m We study diffusion models in the setting of inverse problems.
m Goal of the course:
» Present techniques to solve inverse problems in our framework.
» Present an end-to-end text-to-image model.
m Outline of the course
» Techniques and tricks in inverse problem diffusion models.
» Deep-dive in Imagen.

emely angry bird

Figure 2: Some outputs of the Imagen model Saharia et al. (2022). 658



Inverse problems and diffusion

models



Illustrative example: astronomical image reconstruction

m Recover x € R? from low-dimensional degraded observation
y=MFx+ w,

m F is the continuous Fourier transform, M € C™*¢ is a measurement mask

operator, and w is Gaussian noise. We use the model

p(xly) o< exp (=lly = MFx|[*/20" — 0||¥x]|:) 1en (x).

m Now, with a diffusion model prior!

15

n

N

Figure 3: Radio-interferometric image reconstruction of the W28 supernova.
Credit to Marcelo Pereyra. Left: ||y
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Diffusion models for inverse problems

m Question: how to use denoising diffusion models for inverse problems?
m We present several techniques:

» Amortization

» Replacement (with or without correction)

» Conditional guidance

» Denoising Diffusion Restoration Models
m Main applications:

» Inpainting, deblurring

» Class conditional generative modelling

(b) Deblurring (Noisy with oy, = 0.1)

Lorgm ipsum

mn%‘:ct I : :
Elusmiod tefiy - =t

et dolore mag

i vedam . 4

(c) Inpainting (Noisy with oy, = 0.1)

> Text-to-image

Figure 4: Image extracted from Kawar et al. (2022). .



Amortization

m The simplest technique: amortize everything.
m Score matching techniques: Vincent (2011); Hyvérinen (2005)

Vlog piet1(xes1]y) = Epyeys , [V 108 prerjo (X411 X0)]-

» Loss function:

[ Usicr1) = Elllsirs (s, ¥) = V108 pi o (X X0) ]
» Algorithm: replace V1og pr+1 by si11-

Same algorithm as before but instead of sampling X, and then noise it, sample
(Xo, Y) and then noise it.

Advantages:

» Straightforward to implement (just another input to the network).
» Works for generic data.

m Problems:

» What if T only want to train one generative model?

» What if at inference size y has a different size than the training samples?
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The replacement method

m Second technique: replacement technique.
m We only train one diffusion model.
m Example of inpainting:
» Train a denoising diffusion model.
At inference time, we observe part of the image (y with a mask m)
Diffuse y forward in time Yo.n
Sample Xy ~ N(0,Id)
Apply the backward diffusion step:
X = Xot1 + Y Xnt1 + 2780(Xn) + V2720
» Replace using X, = mX, + (1 — m)Y, (pointwise multiplication)

vvyyvyy

» Go back to the backward diffusion step and iterate.
m Advantages:

» Only one generative model to train

» Straightforward to implement

» Very useful in protein modeling
m Problems:

» Only work on specific problems (mask)

» No guarantee of convergence 10/39



A particle filtering point of view (1/2)

m Our goal is to sample from p(xo.7|yo:7) (Where here yo.r is a forward

trajectory initialized at y).

m Denote the set of target {m; }*_, such that
T = P(xt:T|yt:T)~

m The replacement procedure:

> At time T we sample from p(xr) ~ p(xr|yr) (independence).
» Then, at time ¢t we sample from p(x;|xi41, yi+1) (sample from

p(xt, Ve|xi41, yi+1) and discard y;).
» But if we start from x;41.7 ~ 741 then

Xp:T ~ P(xt‘xH»l, y:+1)7T:+1(xt+1:T)
= p(xt|xet1, Y1) p(Xet 17| Yet1:7)

# Wt(xt:T) = p(xt:let:T)~
» We have lost the information about y;.
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A particle filtering point of view (2/2)

m We have the following proposal
xe ~ (| Xet1, Vi)

m The extended proposal is p(x¢|xi+1, Ve+1)Te+1:7(Xe+1:7) and we have

’ o1/ [p(%e|Xet 1, Vi) T (ep1:7)] = (e, Vel X1, Yerr) /P (e | X1, Yeta).- ‘

m This quantifies the mismatch in the proposal.

A simplification

P(Xz, yt|xz+17 yz+1)/P(Xt|xt+17 y:+1) = P(yz\xt, Yi+1, xt+l)~

In a masked model we have x; L y; conditionally to x;41, yi+1 and therefore

’m;r/[p(xtlx,+17 V) Terr:1(Xegr:1)] = p(yel X1, Vi) ‘

m Therefore, we need to reweight by p(y:|xi+1, Ye+1)-
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SMC-Diff method

m This procedure of proposal/reweighting is called Particle Filtering,
Doucet et al. (2009).

» Many applications in statistics (optimal estimation problems).
» Bayesian filtering methods: Kalman Filter, Extended Kalman Filter.

m The complete methodology:

» Diffuse y (forward) and get the trajectory yo.r
» Start with N particles distributed according to p(xr)®*
» Update the N particles according to p(x¥|xF, ,, yr41) for each
k € {1,...,N} (independently).
» Resample the N particles with weight proportional to
{plxtyrs i) i
m Procedure described in Trippe et al. (2022) (SMC-Diff).

m One potential drawback: scaling with the dimension.
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Iterative replacement method

Figure extracted from Lugmayr et al. (2022)

m Another trick:

» Tterating the replacement step Lugmayr et al. (2022) (Repaint)
» Claim that it increases the dependency between the context and the

generation.
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Iterative replacement: algorithm

m At step t and observation yj
» Sample from p(yi.7|y0)
» Sample from p(x¢|xi+1, Vet1)
» Sample from p(xi+1|x:) (NEW)
» Repeat the operation L times (NEW)

m The information between x; and y; is mixed multiple times per time step.

Input Xe—1~q ~ Mask
Mask Inv.
Next

Iteration
Figure 5: Image extracted from Lugmayr et al. (2022).
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Explicit guidance

m Third technique: conditional guidance

m Just guide the diffusion with an extra term in the drift

s0(x) = so(x) + wVlog ps(y]x)
» w is the guidance strength.
m What is py?

» Classifier in the case of class conditional sampling Dhariwal and
Nichol (2021).

» Can be an amortized score model, i.e. (classifier free, Ho and Salimans
(2022)) V log pg (y|x) — so(x, y) — sa(x)

» Push the samples towards p(x|y) and away from p(x).

SO ¢ GO ¢ MO o
. ' il alr -

Figure 6: Increasing amount of guidance on the class “malamute” in

ImageNet. Image extracted from Ho and Salimans (2022).
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Denoising Diffusion Restoration Model

m For linear models: Denoising Diffusion Restoration Models
» We assume an observation model of the form y = {yi}f-\lzl,
Vi = X + U;Z,», Z; 1.1.d. Gaussian (we drop the index i for simplicity).
» Works for more general linear inverse problems using the SVD
decomposition.
m Take a modified DDPM approach.

m Goal: do not learn a new model (no need to retrain).

(c) Inpainting (Noisy with oy, = 0.1)

Figure 7: Image extracted from Kawar et al. (2022). TS



The perturbation model

= In a DDPM “like” model !

_2\1/2
galxi41, 30) = N 10 + EL0 (a1 = ), 700),

q(x7|x%0) = N(x1; %0, 071).

m Property: for every t € {1,..., T},’ q(xt|x0) = N(x¢5 x0, 0v) |
m We consider the following DDRM model

(1*712)1/2@
N(x:, x0 + o

_ /
q(xe|xi41, %0, y) = N(x, x0 + %(y — Xp),107¢) ifo, <oy
N(xi, (1= ne) %o + moy, (0F —mo3)'/?)  ifor > oy

(%41 — X%0),mo:)  ifoy = 400

(erl0) N(xr, xo, 0T) ifor <o,
XT|X0) = g .
R N(xr,y, (0} = %)) ifor > o,
m Hyperparameters (similar to Song et al. (2020)):

» 1, before o; < oy,

» 1 after oy > o,

m Property: for every t € {1,. .., T},’ q(xt|x0) = N(x¢5 %0, 0v) |

1Original DDPM is a discretization of the Ornstein-Uhlenbeck so you won’t find these
equations in Ho et al. (2020). 18/39



Properties of the forward model

m Recall that

)20, .
N(xt, xo + %(x,_,_l —x),noy) ifoy =+o0
_n2)1/?
q(xt|Xt41, %0, y) = N(x, %0 + %(y — X0),M0%t) ifo, <oy

N(xt7 (1 - Wb)xo + Yy, (Utz - UbU;)l/z) if oy > gy
N(xr, x0,07) ifor <o,

q(xr|x) = { N(xr,y, (0% — o)) ifor > 0y

m Practical case:n=1,1m, =1

» When the noise level o; < o, we rely on xo.
» When the noise level o, < oy, we rely on y.

m DDPMcase:n = 1,7, = 20?/(0? + af,)

» We recover a DDPM loss.
> The last equation is only valid if n, < o7 /0% (in general), with that value
of 7 it implies that o; > o,.
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The backward model

m Asin DDPM:
o o =), . o
N(X'f, Xo —+ T—H(XH—l — )C())7 7]0'[) lny = 400
N _nH)l/24 N .
po(Xi|xit1,y) = N(x, % + %(y — X0),M0%) ifo, <oy

N(xtv (1 - 7717)550 + Yy, (Utz - T]bo-f/)l/z) if oy > gy

N(xr,0,07) ifor <o,
q(xr|x) = 2 2 ]
N(xTay» (UT_Uy)) ifor Zo'y

m g(xr|x) = q(xr) (approximately valid if o > 1).
m X is the prediction of a generative model (like DDPM).

Polx0, %1, %2, x3) polX0, X1, X2, x;\y

Gy ) —) ,
HI]

A 1
Iﬂj] —(
q(x1. X2, X3/xq) models for linear g1, X2 X3/%0. ¥)

Use pre-trained

OO OOl W ()
Denoising Diffusion Probabilistic Models Denoising Diffusion Restoration Models
(Independent of inverse problem) (Dependent on inverse problem)

Figure 8: Image extracted from Kawar et al. (2022). .



Deep Dive into Imagen



Text-to-image synthesis

A family of three houses in a meadow. The Dad house A cloud in the shape of two bunnies playing with a A Pomeranian is sitting on the Kings throne wearing
is a large blue house. The Mom house is a large pink ball. The ball is made of clouds too. a crown. Two tiger soldiers are standing next to the
house. The Child house is a small wooden shed. throne.

An angry duck daing heavy weightlifiing at the gym. A dsle picture of colorful graffiti showing a hamster A photo of @ person with the head of a cow, wearing
with a moustache. a tuxedo and black bowtie. Beach wallpaper in the
background.

Figure 9: Image extracted from Saharia et al. (2022).
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A brief history of text-to-image models

m 1.5+ year of progress:
» DALLE Ramesh et al. (2021) (24 February 2021)
VQ-Diffusion Gu et al. (2022) (29 November 2021)
Glide Nichol et al. (2021) (20 December 2021)
Stable Diffusion Rombach et al. (2022) (20 December 2021)
MidJourney Midjourney (2022) (14 March 2022)
DALLE2 Ramesh et al. (2022) (13 April 2022)
VQ-GAN Crowson et al. (2022) (18 April 2022)
Imagen Saharia et al. (2022) (23 May 2022)
» E-DIff Balaji et al. (2022) (2 November 2022)

m Earlier work using GAN approaches (see references in Gu et al. (2022)).

VVvVvYVYyVvVYYVYY

m A first comparison between models Borji (2022).

v 7k L .
-/ — ; . |

Abl een backpack.

ack apple and a5
Figure 10: Image extracted from Saharia et al. (2022). RS



Overview of the model

“A Golden Retriever dog wearing a blue
checkered beret and red dotted turtleneck.”

Text

Text Embedding

Te
Diffusion M

64 % 64 Image
Super-Resolution
diffusion Model

256 % 256 Image e |

Super-Resolution
Diffusion Model

1024 x 1024 Image

Figure A.4: Visualization of Imagen. Imagen uses a frozen text encoder to encode the input text
into text embeddings. A conditional diffusion model maps the text embedding into a 64 x 64 image.
Imagen further utilizes text-conditional super-resolution diffusion models to upsample the image,
first 64 x 64 — 256 x 256, and then 256 x 256 — 1024 x 1024.

Figure 11: Image extracted from Saharia et al. (2022).
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Structure of the section

m Presentation of Imagen Saharia et al. (2022):

» Text-encoder

Sampler: conditional guidance and dynamic thresholding
Cascaded Diffusion Models

Architecture (Efficient U-Net)

Qualitative and quantitative results

vvyyvyy

A brain riding a rocketship heading towards the moon. A dragon fruit wearing karate belt in the snow. A strawberry mug filled with white sesame seeds. The
mug is floating in a dark chocolate sea.

Figure 12: Image extracted from Saharia et al. (2022).
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Text-to-Text Transfer Transformer

m T5: Text-to-Text Transfer Transformer Raffel et al. (2020)

» Based on the Transformer Architecture Vaswani et al. (2017)
» Checkpoint and model available at
https://huggingface.co/docs/transformers/model_doc/t5

Q T

softmax( BE\% @ ) H}}

Figure 13: Image extracted from the “Illustrated Transformer” blogpost by Jay
Alammar.

m Trained on a multi-task mixture (each task is text-to-text). Examples:

translation, summarization...
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https://huggingface.co/docs/transformers/model_doc/t5

Contrastive Language-Image Pre-Training

m CLIP: Contrastive Language-Image Pre-Training Radford et al. (2021)
» Task: predicting which caption goes with which image.

» Good text/image representation

Pepper the Text
aussis pup —» Encoder l l i l
- _— T, T, T3 Tn
—» 0 LTy | Ty | 1Ty 1) Ty
L Iy LTy | ITy | 12Ty Iy Ty
Elr:I::iger » I LT | LT | BT | . Ty
L s Iy INTy |IyTa | IyTy | . [Ty
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Contrastive learning

m The training procedure:
» We have N (batch) pairs of text/image
> We get the image embedding I, € RY*% (N is the size of the batch)
> We get the text embedding T, € RV* 4 (N is the size of the batch)
» We compute the L = T,JeT c RVXN

m We compute the cross-entropy loss for text and image
> {Ww}u 1= {LU/Zk 1 lk}t} Ll = Zflzl IOg(WiT,i)

> {le}lj 1= {L 7}/ Zk 1ij}11 1’ Zivzl log(wz{i)
» Finalloss £ = ¢/ + ¢T

Ll iy | i v ey

Figure 15: Image extracted from Radford et al. (2021).

m Reminiscent of contrastive learning in unsupervised learning.
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Explicit guidance

m Recall the conditional guidance technique

m Just guide the diffusion with an extra term in the drift

s0(x) = so(x) + wVlog ps(y]x)
» w is the guidance strength.
m What is py?

» Classifier in the case of class conditional sampling Dhariwal and
Nichol (2021).

» Can be an amortized score model, i.e. (classifier free, Ho and Salimans
(2022)) V log pg (y|x) — so(x, y) — sa(x)

» Push the samples towards p(x|y) and away from p(x).

SO ¢ GO ¢ MO o
. ' il alr -

Figure 16: Increasing amount of guidance on the class “malamute” in

ImageNet. Image extracted from Ho and Salimans (2022). TS



Classifier-free guidance

Algorithm 1 Joint training a diffusion model with classifier-free guidance

Require: pyncond: probability of unconditional training

1: repeat

2 (x,c) ~ p(x,¢) > Sample data with conditioning from the dataset
3 ¢ « @ with probability pyncona > Randomly discard conditioning to train unconditionally
4: A~ p(N) > Sample log SNR value
5: e~ N(0.I)

6 Z), = Q)X+ 0)\€ > Corrupt data to the sampled log SNR value
7: Take gradient step on Vy ||€g(zy, c) — eH2 > Optimization of denoising model
8: until converged

Figure 17: Training of the classifier free guidance model. Image extracted from Ho
and Salimans (2022)
B Puncond 1S usually set to 0.2.
» Small portion of training dedicated to unconditional model.
» Guidance strength: interpolation between diversity and fidelity.

Figure 18: Image extracted from Ho and Salimans (2022)
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Dynamic thresholding

m In Saharia et al. (2022):
» Classifier-free guidance
» Score is amortized w.r.t. the text embedding
m Classifier-free outputs with strong guidance are saturated. Solution:
thresholding (at sampling time)
» Static thresholding: project the update in the range [—1, 1].
» Dynamic thresholding: project the update in the range. Set s to a

percentile absolute pixel value Threshold to the range [—s, s] if s > 1 and

divide by s.

A\ B
. I
(a) No thresholding. (b) Static thresholding.

Figure 19: Image extracted from Saharia et al. (2022). 30/39



Cascaded Diffusion Models

m Cascading for diffusion models was introduced in Ho et al. (2022)

256x256

64x64
32x32
Class ID = 213
“Irish Setter”

*«— —_—
Model 1 Model 2 ]

Figure 20: Image extracted from Ho et al. (2022).

m Useful technique in generative modeling Menick and Kalchbrenner (2018);
Razavi et al. (2019). Below z is an upsampled version of the previous

[0, M (305 Mi (812, 2 % My

(x.3) NI M, NL 2w M, ¥t

Figure 21: Image extracted from Ho et al. (2022). S/



Gaussian and truncated conditioning

m It is beneficial to condition on a noisy version of the low-resolution image.

P Strategy 1: Gaussian conditioning
P Strategy 2: Truncated conditioning

Algorithm 2 Sampling from a two-stage CDM with Gaussian conditioning angmentation

Require: e: class label
Require: s conditioning sugmentation truncation time
s zp o~ N0,

2. if wsing truncated conditioning sugmentation then

1~ pralgs e )

.0 end for

i: else

7 fort =T, .. .. L do

8 Ze 1~ palZs- |2 €)

L end for

10: &~ (s |aEn ) e Overwrite previously sampled value of 2.
11: end if

0.1)

.1da

e e~ pa(xeot X e e)
- end for

16 return xq

Figure 22: Image extracted from Ho et al. (2022).
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Positional encoding

m The time is one-dimensional. We create a feature vector associated with it.
m This is like a continuous version of the one-hot encoding.

class TimeEmbedding (hk.Module):
def init (self, dim):
super(). init ()
self.dim = dim

def call (self, time):
half dim = self.dim // 2
embeddings = jnp.log(10000) / (half dim - 1)
embeddings = jnp.exp(jnp.arange(half dim) * -embeddings)
embeddings = time[:, jnp.newaxis] * embeddings[jnp.newaxis, :]
embeddings = jnp.concatenate(
(jnp.sin{embeddings), jnp.cos(embeddings)), axis=-1

w50

w0
035

75

)

return embeddings
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Resnet block

class Block(hk.Module):

def

def

init_ (self, dim out, groups=8):
super{). init ()
self.proj = hk.Conv2D(dim out, kernel shape=3, padding=(1, 1))
self.norm = hk.GroupNorm(groups)
self.act = jax.nn.silu

call_ (self, x):
x = self.proj(x)
x = self.norm(x)
x = self.act(x)
return x

class ResnetBlock(hk.Module):
""*https://arxiv.org/abs/1512.03385"""

def

def

init (self, dim out, groups=8, change dim=False):
super().__init_ ()
self.mlp = hk.Sequential([jax.nn.silu, hk.Linear(dim out)])
self.blockl = Block(dim out, groups=groups)
self.block2 = Block(dim_out, groups=groups)
self.res_conv = (
hk.Conv2D(dim_out, kernel_shape=1, padding=(@, @))
if change_dim
else lambda x: x

call__ (self, x, time_emb):
h = self.blockl(x)

time_emb = self.mlp(time_emb)
# We add new axes to the time embedding to for broadcasting.
h = time emb[:, jnp.newaxis, jnp.newaxis] + h

h = self.block2(h)
return h + self.res_conv(x)
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Skip connection

m In the U-Net architecture a key component is the skip connection.

m Recover information lost during the downsampling.

def _call (self, x, time):
x = self.init_conv(x)

t = self.time_mlp(time)
h=1]
# downsample 5
for blockl, block2, downsample in self.downs: gﬁ&f
x = blockl(x, t) ‘
x = block2(x, t) quw\&(:\“f"
h.append(x)
x = downsample(x) 7/}
# bottleneck
x = self.mid_blockl(x, t)

x = self.mid_block2(x, t)

# upsample
for blockl, block2, upsample in self.ups:
x = jnp.concatenate((x, h.pop()), axis=-1)
blockl(x, t) —
block2(x, t)
upsample(x)

x X %

x = self.final_block(x, t)
return self.final_conv(x)

35/39



The Unet architecture

m First introduced for biomedical image segmentation Ronneberger et al.
(2015).
m Used in Ho et al. (2020); Song et al. (2021).
m Putting everything together.
» Downsampling (Resnet block + time embedding)
» Upsampling (Resnet block + time embedding)
» Skip connections

H
mw oI

‘ ST
e — /e
A 4

" )
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Importance of the text encoder

FID-10K

FID-10K

FID@10K

0.22 0.24 0.26 0.28
CLIP Score

(a) Impact of encoder size.

024 025 026 027 028 029
CLIP Score

(b) Impact of U-Net size.

m Pareto curve (CLIP score/FID score)

0.26 0.27 0.28 0.29

CLIP Score

(c) Impact of thresholding.

m Sweep over multiple guidance values from 1 to 10

m Scaling the text encoder is more important than scaling the Unet

m Classifier-free guidance with large weight



Imagen (Ours) DALL-E 2 [54]

A pandé héking latte art.

Figure 23: Image extracted from Saharia et al. (2022).
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GAN: s strike back

m Recently: GigaGAN Kang et al. (2023)
» State-of-the-art on the COCO dataset (FID).
P Very fast generation (0.13s for a 512 X 512 image).

a blue Porsche 336 parked in
frant of a yellow brick wall.

A living room with a fireplace at
a wood cabin, Interior design.

A Fainting of @ mJEStic royalL

Eiffel Tower,
photography tal ship in Age of Discavery.

Isamctric underwater Atlantis city
with a Greek tesple in a bubble.
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Figure 24: Image extracted from Kang et al. (2023).
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