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Summary of the previous lecture (1/4)

In the previous lecture we developed some theory for score-based
generative modeling:
▶ Continuous time-reversal.
▶ Approximation theorem.
▶ Connection with Normalizing Flows.
▶ Accelerations of SGMs.

Recall the basics of SGM:
▶ Sample a forward trajectory, noising the distribution.

Xk+1 = Xk − γXk +
√

2γZk+1 .

▶ Sample a backward trajectory via ancestral sampling.

Xk = Xk+1 + γ{Xk+1 + sθ(kγ,Xk+1)}+
√

2γZk+1 .

▶ Backward sampling relies on learning the score (score-matching)

sθ⋆(kγ, ·) = argmin
θ

{E[∥sθ(kγ,Xk)−∇ log pk|0(Xk|X0)∥2] : f ∈ L2(pk)} .
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Summary of the previous lecture (2/4)

Convergence of diffusion models (De Bortoli et al., 2021)

Assume there exists M ≥ 0 such that for any t ∈ [0, T ] and x ∈ Rd

||sθ⋆(t, x)−∇ log pt(x)|| ≤ M ,

with sθ⋆ ∈ C([0, T ] × Rd ,Rd) and regularity conditions on the density of π
w.r.t. the Lebesgue measure and its gradients.

Then there exist B,C,D ≥ 0 s.t. for any N ∈ N and {γk}Nk=1 the following
hold:

∥L(YN )− π∥TV ≤ B exp[−T ] + C(M + γ1/2) exp[DT ] .

where T = Nγ.

A few remarks:
▶ The assumption on π is not satisfied if π defined on amanifold of Rd

with dimension p < d.
▶ The approximation assumption is strong and could be relaxed.
▶ The term exp[DT ] can be improved and turned into a polynomial

dependency.
3 / 49



Summary of the previous lecture (3/4)

Having a deterministic model is useful for:
▶ Likelihood computation
▶ Interpolation
▶ Temperature scaling

We can explore the latent structure.

Figure 1: Interpolation with ODE. Image extracted from Song et al. (2021).
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Summary of the previous lecture (4/4)

For high-quality image sampling vanilla SGMs are notably slow.
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Outline of the course

We introduce basics Schrödinger bridges.

Goal of the course:
▶ Introduce the Schrödinger bridge (SB) problem.
▶ Present algorithms to solve the SB problem.

Outline of the course
▶ A dynamic and static Schrödinger bridges.
▶ Convergence of the Sinkhorn algorithm.

Figure 2: A Schrödinger Bridge between two data distributions. Image
extracted from De Bortoli et al. (2021).
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The Schrödinger Bridge Problem



Outline of the section

In this section:

▶ We present generative modeling via Schrödinger Bridge (SB).
▶ We introduce dynamic and static SB.
▶ We draw links with regularized Optimal Transport (OT).

Figure 3: Entropic regularized OT. Image extracted from Peyré et al. (2019).
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Generative modeling and Schrödinger bridges
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The dynamical setting

Problem introduced by Schrödinger (1932).
▶ Particles follow a Brownian motion.
▶ At t = T the observed distribution is different from a Brownian

evolution.
▶ What was themost likely evolution?

A first dynamical formulation:

π⋆ = argmin{KL(π|π0) : π ∈ P((Rd)N ), π0 = ν0, πN = ν1} ,

where:
▶ π0 ∈ P((Rd)N ) is a reference measure.
▶ νi ∈ P(Rd) are extremal conditions i ∈ {0, 1}.

π⋆ is the “closest” measure to π0 such that its initial and terminal
conditions are fixed.

The problem is said to be dynamical because it is defined on the state-space
(Rd)N+1.

We will later see a static formulation.
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Generative modeling and Schrödinger bridge

Recall that the dynamical formulation is given by

π⋆ = argmin{KL(π|π0) : π ∈ P((Rd)N ), π0 = ν0, πN = ν1} ,

Link with generative modeling:
▶ π0 ∈ P((Rd)N ) is the discretization of the Ornstein-Ulhenbeck process.
▶ ν0 is the data distribution.
▶ ν1 = N(0, Id) is the easy-to-sample distribution.
Contrary to classical SGM we do not require πN ≈ ν1 (N ≫ 1 in vanilla SGM).
In Schrödinger bridges this condition is imposed.

Figure 4: Noising and generative processes in SGM. Image extracted from
Song et al. (2021).
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The continuous dynamical setting

The discrete dynamical formulation is given by

π⋆ = argmin{KL(π|π0) : π ∈ P((Rd)N ), π0 = ν0, πN = ν1} ,

We can also state the problem in continuous time:

▶ We replace P((Rd)N ) by P(C).
▶ C = C([0, T ] ,Rd), with the topology given by ∥ · ∥∞.
▶ Technical point: C is a Polish space.

The continuous dynamical formulation is given by

Π⋆ = argmin{KL(Π|Π0) : Π ∈ P(C),Π0 = ν0, ΠT = ν1} ,

▶ Π0 ∈ P((Rd)N ) is a reference measure.
▶ νi ∈ P(Rd) are extremal conditions i ∈ {0, 1}.

The discrete formulation can be seen as a discretization of the continuous
formulation.
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The static setting

We have seen two different dynamical settings:

▶ The discrete formulation.
▶ The continuous formulation.

We now present the static formulation.

π⋆,s = argmin{KL(π|π0
0,N ) : π ∈ P((Rd)2), π0 = ν0, π1 = ν1} ,

where:

▶ π0
0,N ∈ P((Rd)2) is a reference measure.

▶ νi ∈ P(Rd) are extremal conditions i ∈ {0, 1}.
▶ This amounts to finding the coupling the “closest” to π0

0,N w.r.t. the
Kullback-Leibler divergence.

▶ We will see that these formulations are equivalent, when π0
0,N is the

marginal of π0 at time {0,N}.
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Basics on disintegration

Let X,Y be Polish spaces.

Let P ∈ P(X) and ϕ : X → Y a measurable mapping.

Let Pϕ = ϕ#P (in particular, Pϕ ∈ P(Y)).

There exists RP,ϕ a Markov kernel, i.e.

▶ For any y ∈ Y, RP,ϕ(y, ·) ∈ P(X).
▶ For any A ∈ B(X), RP,ϕ(·,A) : Y → [0, 1] is measurable.
▶ We have the disintegration formula

P(A) =
∫
Y RP,ϕ(y,A)dPϕ(y) .

Example: if X = Rd × Rd , Y = Rd and ϕ(x1, x2) = x1. Assume that P admits a
positive density w.r.t. the Lebesgue measure. In this case:

▶ Pϕ is the marginal w.r.t. the first component with density p(x1)
▶ RP,ϕ is the conditional probability of the second component given the

first with density p(x2|x1).
▶ The previous formula then simply states that p(x1, x2) = p(x2|x1)p(x1).

13 / 49



The chain rule formula

Using the disintegration of the measure we have the following result.

Chain rule for the Kullback-Leibler divergence Léonard (2014)

Let X,Y be Polish spaces.
Let P,Q ∈ P(X), ϕ : X → Y measurable. Then, we have

KL(P|Q) = KL(Pϕ|Qϕ) +
∫
Y KL(RP,ϕ|RQ,ϕ)dPϕ(y) .

Proof with positive densities (assuming that all quantities are finite) and
ϕ(x0, x1) = x0

KL(P|Q)=
∫
Rd×Rd log(p(x0, x1)/q(x0, x1))p(x0, x1)dx0dx1

=
∫
Rd×Rd log(p(x0)p(x1|x0)/{q(x0)q(x1|x0)})p(x0, x1)dx0dx1

=
∫
Rd×Rd log(p(x0)/q(x0))p(x0)dx0

+
∫
Rd (

∫
Rd log(p(x1|x0)/q(x1|x0))p(x1|x0)dx1)p(x0)dx0 .

This formula is key for the analysis of Schrödinger bridges.
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Equivalence between static and dynamic (1/2)

Recall the discrete dynamical formulation

π⋆ = argmin{KL(π|π0) : π ∈ P((Rd)N ), π0 = ν0, πN = ν1} ,

Recall the static formulation

π⋆,s = argmin{KL(π|π0
0,N ) : π ∈ P((Rd)2), π0 = ν0, π1 = ν1} ,

Apply the chain rule formula with ϕ(x0:N ) = (x0, xN ),

KL(π|π0) = KL(π0,N |π0
0,N ) +

∫
Rd×Rd KL(Rπ,ϕ|Rπ0,ϕ)dπ0,N (x0, xN ) .

To minimize the RHS term under π0 = ν0 and πN = ν1, we can set
Rπ,ϕ = Rπ0,ϕ.

We have that π⋆ = π⋆
0,NRπ0,ϕ, with π⋆

0,N solution of the static problem, i.e.

π⋆ = π⋆,sRπ0,ϕ .
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Equivalence between static and dynamic (2/2)

This equivalence gives us a way to sample from π⋆:

▶ Sample (x0, xN ) from π⋆,s.
▶ Sample from the bridge associated with π0 and extremal conditions x0, xN .

Video extracted from a tweet by Lenaïc Chizat.
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The potential approach
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Information geometry

We start with a projection result by Csiszár (1975).

Projection for the Kullback-Leibler divergence Csiszár (1975)

Let (X,X ) be a measurable space and F = {fi : i ∈ I} a set of real-valued
measurable functions.
Let P0 ∈ P(X) and let PF(X) = {P ∈ P(X) : supF

∫
X |f (x)|dP(x) < +∞}.

Let A = {ai : i ∈ I} and

PF,A(X) = {P ∈ PF(X) :
∫
X fi(x)dP(x) = ai, for any i ∈ I} .

Assume that there exists Q ∈ PF,A such that KL(Q|P0) < +∞.
Then P⋆ = argmin{KL(P|P0) : P ∈ PF,A(X)} exists is unique and there
exist:
▶ g ∈ F̄ (closure in L1(P⋆)), C ≥ 0,
▶ N with P⋆(N) = 0,

▶ such that for any x ∈ N, (dP⋆/dP0)(x) = 0 and for any x ∈ X\N

(dP⋆/dP0)(x) = C exp[g(x)] .
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Exponential model

A first case of application of the theorem: maximum entropy models.

In this case |I| < +∞ (finite family of constraints).

We get that (if P0 ≪ P⋆) for any x ∈ X

(dP⋆/dP0)(x) = exp[⟨θ⋆, f (x)⟩]/
∫
X exp[⟨θ

⋆, f (x̃)⟩]dP0(x̃) .

In the previous lectures we showed that θ⋆ ∈ R|I| could be interpreted as dual
parameters.

In particular, under mild conditions, they can be obtain by solving the
following optimization problem

θ⋆ = argmin{log(
∫
X exp[⟨θ, f (x̃)⟩]dP

0(x̃)) : θ ∈ R|I|} .

We obtain a family of (linear) exponential models (macrocanonical models).
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Schrödinger Bridges as projections

We are going to see that the static Schrödinger Bridge problem can be seen as a
projection.
We set the following:
▶ X = (Rd)2, P0 = π0

0,N ∈ P(X).
▶ F = {f0 ⊕ f1 : fi ∈ L1(νi), i ∈ {0, 1}}.
▶ A = {

∫
Rd f0(x)dν0(x) +

∫
Rd f1(x)dν1(x) : fi ∈ L1(νi), i ∈ {0, 1}}.

We obtain that PF,A(X) = {π ∈ P((Rd)2) : π0 = ν0, π1 = ν1}.
Hence, we get that

argmin{KL(π|π0
0,N ) : π0 = ν0, π1 = ν1} = argmin{KL(π|P0) : π ∈ PF,A(X)} .

Assuming that KL(ν0 ⊗ ν1|P0) < +∞ we can apply the projection theorem
Csiszár (1975) and π⋆,s = argmin{KL(π|π0

0,N ) : π0 = ν0, π1 = ν1} exists is
unique and there exist:
▶ g ∈ F̄ (closure in L1(P⋆)), C ≥ 0,
▶ N with P⋆(N) = 0,
such that for any (x, y) ∈ N, (dπ⋆,s/dπ0

0,N )(x, y) = 0 and for any (x, y) ∈ X\N

(dπ⋆,s/dπ0
0,N )(x, y) = C exp[g(x, y)] .
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Optimal potential (1/2)

Assuming that KL(ν0 ⊗ ν1|P0) < +∞ we have that there exist:
▶ g ∈ F̄ (closure in L1(P⋆)), C ≥ 0,
▶ N with P⋆(N) = 0,

such that for any (x, y) ∈ N, (dπ⋆,s/dπ0
0,N )(x, y) = 0 and for any

(x, y) ∈ X\N
(dπ⋆,s/dπ0

0,N )(x, y) = C exp[g(x, y)] .

What is the form of g?

Optimal potential Rüschendorf and Thomsen (1993)

Assume that KL(ν0 ⊗ ν1|π0
0,N ) < +∞, then there exists g0, g1 measurable and

N with π⋆,s(N) = 0 such that for any (x, y) ∈ N, (dπ⋆,s/dπ0)(x, y) = 0. In
addition, for any (x, y) ∈ (Rd)2\N we have

(dπ⋆,s/dπ0
0,N )(x, y) = C exp[g0(x)] exp[g1(y)] .

We have a factorized structure.

We have shown that undermild conditions this structure is necessary.
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Optimal potential (2/2)

Under a slightly stronger assumption we have the following theorem.

Optimal potential Nutz (2021)

Assume that KL(ν0 ⊗ ν1|π0
0,N ) < +∞ and that π0

0,N ≪ ν0 ⊗ ν1.
Then π⋆,s = argmin{KL(π|π0

0,N ) : π0 = ν0, π1 = ν1} exists is unique and there
exist g0, g1 such that for any x, y ∈ Rd

(dπ⋆,s/dπ0)(x, y) = exp[g0(x) + g1(y)]/
∫
(Rd)2 exp[g0(x̃) + g1(ỹ)]dπ0(x̃, ỹ) .

If there exists π, g0, g1 such that for any x, y ∈ Rd

(dπ/dπ0)(x, y) = exp[g0(x) + g1(y)]/
∫
(Rd)2 exp[g0(x̃) + g1(ỹ)]dπ0(x̃, ỹ) ,

and π0 = ν0, π1 = ν1, then π = π⋆,s.

How to find the potentials g0, g1?

These potentials satisfy a system of coupled equations.

A modern overview of properties of Schrödinger bridges Nutz (2021).
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Schrödinger equations

Under mild assumptions we have that

(dπ⋆,s/dπ0)(x, y) = exp[g0(x) + g1(y)] .

We recall that such a decomposition is necessary and sufficient.

Agreement with the marginals: for any A,B ∈ B(Rd)

ν0(A) =
∫
A×Rd exp[g0(x) + g1(y)]dπ0(x, y) ,

ν1(B) =
∫
Rd×B exp[g0(x) + g1(y)]dπ0(x, y) .

These equations are called the Schrödinger equations.

This a coupled system of equations.

We will see that the Sinkhorn algorithm iteratively solves these equations.

First proof of existence of such potentials by Fortet (see Léonard (2019) for a
recent presentation and survey).

23 / 49



Discrete Dynamic potentials and twisted kernels

Under mild assumptions we have

(dπ⋆,s/dπ0
0,N )(x, y) = f0(x)f1(y) .

We also have π⋆ = π⋆,sRπ0,ϕ, with ϕ(x0:N ) = (x0, xN ).
Combining these two results we get that for any x0:N ∈ (Rd)N+1

(dπ⋆/dπ0)(x0:N ) = f0(x0)fN (xN ) .

Denote f 00 = f0, f N1 = f1 and define for any ℓ ∈ {1, . . . ,N}

f ℓ0 (xℓ) =
∫
Rd f

ℓ−1
0 (xℓ−1)π

0
ℓ|ℓ−1(xℓ|xℓ−1)dxℓ−1 ,

f ℓ1 (xℓ) =
∫
Rd f

ℓ+1
1 (xℓ+1)π

0
ℓ+1|ℓ(xℓ+1|xℓ)dxℓ+1 .

We get that for any k, ℓ ∈ {0, . . . ,N} with k ≤ ℓ

(dπ⋆
k:ℓ/dπ

0
k:ℓ)(xk:ℓ) = f k0 (xk)f

ℓ
1 (xℓ) .

In particular, we get that for any k ∈ {0, . . . ,N − 1}

π⋆(xk+1|xk) = π0(xk+1|xk)f k+1
1 (xk+1)/f k1 (x

k
1 ) .

We obtain twisted kernels. This is a discrete Doob h-transform.
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Interlude on Doob h-transform (1/2)

Let {Pt|s}s,t∈[0,T ],s≤t a semi-group with infinitesimal generator
{Au}u∈[0,T ], i.e. for any s, t ∈ [0, T ], s ≤ t and φ ∈ Cc(Rd)∫

Rd φ(xt)dPt|s(xt ,Xs) = E[φ(Xt) |Xs] =
∫ t
s E[Au(φ)(Xu) |Xs]du .

Let f ∈ C∞([0, T ]× Rd) such that ∂tft = −At(ft) (backward Kolmogorov
equation).

Define the twisted generators {P̂t|s}s,t∈[0,T ],s≤t such that

dP̂t|s(xt , xs) = dPt|s(xt , xs)ft(xt)/fs(xs) .

Then, {Pt|s}s,t∈[0,T ],s≤t a semi-group with infinitesimal generator
{Âu}u∈[0,T ] such that

Âu(φ) = Au(φ) + ⟨∇φ,∇ log(fu)⟩ .

This is assuming that Au(φ) = ⟨bu, φ⟩+ (1/2)∆φ.
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Interlude on Doob h-transform (2/2)

Let us prove this fact. Let s, t ∈ [0, T ] with t ≥ s

E[φ(X̂t) |X̂s] = E[φ(Xt)ft(Xt) |Xs]/fs(Xs) .

We have

E[φ(Xt)ft(Xt) |Xs]− φ(Xs)fs(Xs)=
∫ t
s E[{Au(φfu) + φ∂ufu}(Xu) |Xs]du

=
∫ t
s E[{Au(φ)fu + ⟨∇φ,∇fu⟩+ φAu(fu) + φ∂ufu}(Xu) |Xs]du

=
∫ t
s E[{Au(φ)fu + ⟨∇φ,∇fu⟩}(Xu) |Xs]du

=
∫ t
s E[{Au(φ) + ⟨∇φ,∇ log(fu)⟩}(Xu)fu(Xu) |Xs]du

=
∫ t
s E[Âu(φ)(Xu)fu(Xu) |Xs]du

= fs(Xs)
∫ t
s E[Âu(φ)(X̂u) |X̂s]du .

Hence, we get that

E[φ(X̂t) |X̂s] = φ(X̂s) +
∫ t
s E[Âu(φ)(X̂u) |X̂s]du .
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Continuous dynamic potentials

Back to the Schrödinger bridge problem.

We consider the continuous dynamic problem

Π⋆ = argmin{KL(Π|Π0) : Π ∈ P(C),Π0 = ν0, ΠT = ν1} ,

Under mild assumptions, we have that for any ω ∈ C

(dΠ⋆/dΠ0)(ω) = f0(ω0)fT (ωT ) .

Define for any t ∈ [0, T ]

f t0 (ωt) =
∫
Rd f0(ω0)Π

0(ωt |ω0)dω0 ,

f tt (ωt) =
∫
Rd fT (ωT )Π

0(ωT |ωt)dωT .

If we denote Pt|s the semi-group associate with Π0 then P̂t|s , the semi-group
associated with Π⋆ is the Doob h-transform with twist {f tT}t∈[0,T ].

In particular if Π0 is associated with dXt = b(Xt)dt + dBt then Π⋆ is
associated with dXt = {b(Xt) +∇ log f tT (Xt)}dt + dBt .

This formulation can be linked with stochastic control Dai Pra (1991).
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A quick summary

The Schrödinger bridge problem is a theoretically grounded framework
for generative modeling.

This problem can be formulated in a dynamical or static setting.

We show the existence of potentials for the solutions.

These potentials correspond to a twisting dynamic in the discrete and
continuous-time Schrödinger bridge problem.

In what follows, we draw a link with Entropic Regularized Optimal
Transport.

Figure 5: Noising and generative processes in SGM. Image extracted from
Song et al. (2021).
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Regularized Optimal Transport

29 / 49



Basics on Optimal transport

Recall that Optimal transport corresponds to finding the solution of

Λ⋆ = argmin{
∫
(Rd)2 c(x, y)dΛ(x, y) : Λ0 = ν0, Λ1 = ν1} .

▶ c is the cost function.
▶ Λ⋆ is the optimal coupling.

If c(x, y) = (1/2)∥x − y∥2 and under mild regularity assumptions on ν0, ν1

this problem coincides with the Brenier problem

T⋆ = argmin{
∫
Rd c(x, T(x))dν0(x) : T ∈ L2(ν0), T#ν0 = ν1} .

We get that Λ⋆ = (Id, T)#ν0.

Figure 6: Examples of Optimal Transport. Image extracted from Peyré et al. (2019).
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Entropic Regularized Optimal Transport

Entropic Regularized Optimal Transport

Λ⋆
ε = argmin{

∫
(Rd)2 c(x, y)dΛ(x, y) + εKL(Λ|π0 ⊗ π1) : Λ0 = ν0, Λ1 = ν1} .

▶ π0, π1 ∈ P(Rd).
▶ The solution is the same if π0, π1 replaced by π̃0, π̃1 ∈ P(Rd), see (Peyré

et al., 2019, Proposition 4.2).
This regularization allows for fast algorithms in discrete state spaces such as
the Sinkhorn algorithm.
Entropic optimal transport plans aremore diffuse.

Figure 7: Entropic regularized OT. Image extracted from Peyré et al. (2019).
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From Schrödinger Bridge to OT (1/2)

Recall the static formulation

π⋆,s = argmin{KL(π|π0
0,N ) : π ∈ P((Rd)2), π0 = ν0, π1 = ν1} ,

Assume that the reference measure is of the form

dπ0
0,N (x, y) = (2πε)−d/2 exp[−∥x − y∥2/(2ε)]dν0(x)dy .

Note that in the continuous setting with is equivalent to choosing a reference
measure Π0 associated with (B(ε/T)t)t∈[0,T ], a time-rescaled Brownian motion.

Let π ∈ P((Rd)2) with π0 = ν0 and π1 = ν1. Using the chain-rule with
ϕ(x, y) = x we have

KL(π|π0
0,N ) = KL(ν0|π0

0,N ) +
∫
Rd KL(Rπ,ϕ|Rπ0

0,N ,ϕ)dν0(x) .

This can be rewritten as

KL(π|π0
0,N ) =

∫
Rd×Rd log((dRπ,ϕ/dLeb)(y|x)(2πε)d/2 exp[∥x − y∥2/(2ε)])dπ(x, y) .
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From Schrödinger Bridge to OT (2/2)

We have

KL(π|π0
0,N ) =

∫
Rd×Rd log((dRπ,ϕ/dLeb)(y|x)(2πε)d/2 exp[∥x − y∥2/(2ε)])dπ(x, y) .

This can again be written as

KL(π|π0
0,N ) = (2ε)−1 ∫

Rd×Rd ∥x − y∥2 dπ(x, y) + KL(π|ν0 ⊗ ν1 + Cε .)

Therefore, we have that a Schrödinger bridge with reference measure
(B(ε/T)t)t∈[0,T ] is equivalent (in its static formulation) to the ε-entropic
regularized OT.

Video extracted from a tweet by Lenaïc Chizat.
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A limit theorem

The following result from Mikami (2004) shows the connection between
Schrödinger bridges and Optimal Transport.

Limits of Schrödinger bridge Mikami (2004)

Assume that the reference measure is associated with (B(ε/T)t)t∈[0,T ].
Denote π⋆,s

ε the solution of the static Schrödinger bridge.
Under mild assumptions we have

limε→0 εKL(π⋆,s
ε |π0,ε

0,N ) = W2
2(ν0, ν1) .

We have that limε→0 π
⋆,s
ε = (Id, T)#ν0, the Optimal Transport plan w.r.t. the

Wasserstein distance of order 2.

What happens if the reference dynamic is not a Brownian motion?

If the dynamics is an Ornstein-Ulhenbeck process then we still get a
quadratic cost but instead of (1/2)∥x − y∥2 we get (1/2)∥x − e−Ty∥2.

Correlate with the intuition that (in the Ornstein-Ulhenbeck setting) when
T → +∞, the Schrödinger bridge is closer to ν0 ⊗ ν1.
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The Sinkhorn algorithm



Outline of the section

So far we have introduced the Schrödinger bridge in their static and
dynamic formulations.

We have seen a potential formulation and a link with entropic
regularized OT.

Most of the time Schrödinger bridges are untractable. How can we
approximate them?

We are going to study an efficient algorithm to approximate the potentials.

In this section:

▶ Introduction of the Sinkhorn algorithm.
▶ Geometric convergence in the compact setting.
▶ Convergence results in the non-compact setting.
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Introduction of the algorithm (1/2)

Recall the Schrödinger equations: for any A,B ∈ B(Rd) we have

ν0(A) =
∫
A×Rd exp[g0(x) + g1(y)]dπ0(x, y) ,

ν1(B) =
∫
Rd×B exp[g0(x) + g1(y)]dπ0(x, y) .

We want to solve these equations in g0, g1. In what follows we overload the
notations and denote ν0, ν1, π0 the density w.r.t. the Lebesgue measure of
these probabilities. The Schrödinger equations become

f0(x) = ν0(x)(
∫
Rd f1(y)π0(x, y)dy)−1 ,

f1(y) = ν1(y)(
∫
Rd f0(x)π0(x, y)dx)−1 .

Start with f 00 = f 01 = 1 and define

f n+1
1 (y) = ν1(y)(

∫
Rd f n0 (x)π0(x, y)dx)−1 ,

f n+1
0 (x) = ν0(x)(

∫
Rd f

n+1
1 (y)π0(x, y)dy)−1 .

Iteratively solve the system of equations looking for a fixed point.

This is the Sinkhorn algorithm, also sometimes called Iterative
Proportional Fitting (IPF).
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Introduction of the algorithm (2/2)

We obtain a sequence of measures π2n(x, y) = π0(x, y)f n0 (x)f n1 (y) and
π2n+1(x, y) = π0(x, y)f n0 (x)f

n+1
1 (y).

Under mild assumptions we have that

π2n+1 = argmin{KL(π|π2n) : π ∈ P((Rd)2), π1 = ν1} ,

π2n+2 = argmin{KL(π|π2n+1) : π ∈ P((Rd)2), π0 = ν0} .

The Sinkhorn algorithm amounts to solving half-bridges.
This is an alternate projection scheme w.r.t. the Kullback-Leibler
divergence.

Figure 8: Solving half-bridges. Image extracted from Bernton et al. (2019).
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Convergence in the compact case
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Geometric convergence

We are going to restrict ourselves to the compact setting.

Instead of assuming that the distributions are supported on Rd we assume
that they are supported on a compact set K.

The results obtained so far remain true.

We are going to prove the following theorem

Geometric convergence

Let (πn)n∈N be the sequence obtained with the Sinkhorn algorithm and π⋆ the
Schrödinger bridge. Under mild assumptions, we have

W1(π
n, π⋆) ≤ Cρn .

In fact the main result is a geometric convergence results on the potentials
w.r.t. the Hilbert-Birkhoff metric.

The compactness assumption is key.
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Hilbert-Birkhoff metric

Survey on this distance Lemmens and Nussbaum (2012); Kohlberg and Pratt
(1982); Bushell (1973).

Let (E, ∥ · ∥) be a normed real vector space and Ĉ a cone:
▶ Ĉ ∩ (−Ĉ) = {0}.
▶ λĈ ⊂ Ĉ for λ ≥ 0.
▶ Ĉ is convex.

Let C be a part of the cone, i.e. for any x, y ∈ C, there exist α, β ≥ 0 such
that αx − y ∈ Ĉ and βy − x ∈ Ĉ.

We define for any x, y ∈ C

M(x, y) = inf{β ≥ 0 : βy − x ∈ Ĉ} > 0 ,

m(x, y) = sup{α ≥ 0 : x − αy ∈ Ĉ} .

Finally, we define the Hilbert-Birkhoff metric

dH (x, y) = log(M(x, y)/m(x, y)) .

D̃ = {x ∈ C : ∥x∥ = 1} is such that (D̃, dH ) is ametric space.
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The Birkhoff contraction theorem

Let (V, ∥ · ∥), (V′, ∥ · ∥′) be two normed real vector spaces and C,C′ be
convex parts of the cones Ĉ, Ĉ′ respectively.

Let u : V → V′ be a linear mapping such that u(C) ⊂ C′.

The projective diameter of u is given by

∆(u) = sup{dH (u(x), u(y)) : x, y ∈ C, ∥x∥ = ∥y∥ = 1} .

The Birkhoff contraction ratio of u is given by

κ(u) = sup{κ : dH (u(x), u(y)) ≤ κdH (x, y), x, y ∈ C} .

Then, we have the following theorem.

Birkhoff contraction theorem Birkhoff (1957)

Under the previous assumptions on u, we have

κ(u) ≤ tanh(∆(u)/4) .
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In the space of continuous functions

We have the following proposition.

Hilbert-Birkhoff in continuous spaces

Let Z be a compact space. F = [0,+∞)Z is a cone and F̃ = C(Z, (0,+∞)) is a
convex part of F such that for any λ > 0, λF̃ ⊂ F̃. In addition, we have that for
any f , g ∈ F̃

dH (f , g) = log(∥f /g∥∞) + log(∥g/f ∥∞).

D : f 7→ 1/f is an isometry w.r.t dH .

Hg : f 7→ (x 7→ g(x)f (x)) with g ∈ F̃ is also an isometry.

Consider the mapping Ek,1(f )(x) =
∫
Rd k(x, y)f (y)dy (with

k ∈ Cc(Rd × Rd). We are going to compute its projective diameter.

∆(Ek,1) ≤ 2 sup{dH (f , 1) : f ∈ F̃} = 2 sup{log(supZ f / infZ f ) : f ∈ F̃} .

We find that∆(Ek,1) ≤ 2 log(supZ×Z k/ infZ×Z k). Hence, we get that

κ(Ek,1) ≤ (supZ×Z k − infZ×Z k)/(supZ×Z k + infZ×Z k) .
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Convergence of the potentials

Recall that the Sinkhorn updates are given by

f n+1
1 (y) = ν1(y)(

∫
Rd f n0 (x)π0(x, y)dx)−1 ,

f n+1
0 (x) = ν0(x)(

∫
Rd f

n+1
1 (y)π0(x, y)dy)−1 .

The update is given by Hν0 ◦ D ◦ Eπ0,1 ◦ Hν1 ◦ D ◦ Eπ0,0. This is a contraction.

Denoting f0, f1 the Schrödinger potentials

dH (f n0 , f0) + dH (f n1 , f1) ≤ ρn{dH (1, f0) + dH (1, f1)} .

This convergence result can be found in Chen et al. (2016).

To obtain theW1 result we can proceed as in Deligiannidis et al. (2021).

First results in Sinkhorn and Knopp (1967).

Figure 9: Contraction on cones. Image extracted from Peyré et al. (2019).
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Results in the non-compact setting
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Extension to non-compact setting?

So far we have seen that the Sinkhorn algorithm converges exponentially
fast on compact spaces.

What about the non-compact setting?

First, we have the following convergence result.

Convergence of the Sinkhorn algorithm Nutz (2021)

Assume that
∫
Rd exp[r| log π0(x, y)|]d(ν0 ⊗ ν1)(x, y) < +∞ for some r > 1.

Then limn→+∞ KL(πn|π⋆) = 0.

The exponential integrability condition is replaced by an uniformly
integrable condition in Ruschendorf (1995).

We also get the convergence of the potentials.

We are now going to see what kind of quantitative rates we can achieve.
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A Pythagorean theorem

This Pythagorean theorem was first established by Csiszár (1975) and is at the
basis of the projection theorem.

Pythagorean theorem

Let C ⊂ P(Rd) be a convex set.
Let P ∈ P(Rd) and assume that P⋆ = argmin{KL(P|Q) : Q ∈ C} exists with

KL(P|P⋆) < +∞ (hence is unique).
Then we have that for any Q ∈ C

KL(P|Q) ≥ KL(P|P⋆) + KL(P⋆|Q) .

Assume that P⋆ is an algebraic interior point, i.e. for any Q0 ∈ C, there exists
α ∈ (0, 1) and Q1 ∈ C such that P⋆ = αQ0 + (1− α)Q1. Then, we have equality.

In our Schrödinger bridge setting we have

KL(π0|π⋆) ≥ KL(π0|π1) + KL(π1|π⋆) .

Iterating, we get that

KL(π0|π⋆) ≥
∑n

k=0 KL(π
k|πk+1) + KL(πn+1|π⋆) .
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Convergence rates

Additionally we can show that

KL(πk|πk+1) ≤ KL(πk|πk−1) , KL(πk+1|πk) ≤ KL(πk−1|πk) .

Combining this with the fact that
∑

k∈N KL(π
k|πk+1) < +∞, we get that

limn→+∞ n{KL(πn
0 |ν0) + KL(πn

1 |ν1)} = 0 .

This is a quantitative rate on the convergence of themarginals.

Drawing connections with Bregman gradient descent we also have the
following result.

Quantitative rate Léger (2021)

We have the following rate

KL(πn
0 |ν0) + KL(πn

1 |ν1) ≤ 2KL(π⋆|π0)/n .

If π⋆ is close to π0 then the convergence is faster (constant is smaller).
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Conclusion



Limitation of the potential approach

Recall that the dynamical formulation is given by

π⋆ = argmin{KL(π|π0) : π ∈ P((Rd)N ), π0 = ν0, πN = ν1} ,

Link with generative modeling:
▶ π0 ∈ P((Rd)N ) is the discretization of the Ornstein-Ulhenbeck process.
▶ ν0 is the data distribution.
▶ ν1 = N(0, Id) is the easy-to-sample distribution.
The Sinkhorn algorithm is very efficient in discrete settings (matrix
operations).

Figure 10: Convergence of the Sinkhorn algorithm. Image extracted from
Peyré et al. (2019).

Limitation of the Sinkhorn algorithm for Schrödinger bridges:
▶ Learning the potentials (dynamic programming).
▶ Sampling from twisted kernels.
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Conclusion

We have introduced a new generative modeling framework.
▶ Introduction of Schrödinger bridges.
▶ Connection with Optimal transport.
▶ Introduction of the Sinkhorn algorithm.

Next time:
▶ Introduction of Diffusion Schrödinger Bridge.
▶ Implementation of DSB.
▶ Extensions of DSB.

Figure 11: Diffusion Schrödinger Bridge. Image extracted from De Bortoli
et al. (2021).

See you all on the 28/03!
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