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Summary of the previous lecture (1/4)

In the previous lecture we introduced the Schrödinger bridge problem and
the Sinkhorn algorithm:

▶ Introduction of Schrödinger bridges.
▶ Theoretical properties and link with Optimal Transport.
▶ Introduction of the Sinkhorn algorithm.
▶ Exponential convergence of the algorithm in compact spaces.
▶ Convergence results in non-compact space.

Recall that the dynamical formulation is given by

π⋆ = argmin{KL(π|π0) : π ∈ P((Rd)N ), π0 = ν0, πN = ν1} ,

Link with generative modeling:

▶ π0 ∈ P((Rd)N ) is the discretization of the Ornstein-Ulhenbeck process.
▶ ν0 is the data distribution.
▶ ν1 = N(0, Id) is the easy-to-sample distribution.
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Summary of the previous lecture (2/4)

Advantage of the Schrödinger bridge formulation:

▶ The terminal distribution is Gaussian (no approximation).
▶ The number of steps is arbitrary.
▶ This is a more flexible framework.
▶ Links with Optimal Transport and Stochastic Control.

Some drawbacks:

▶ Longer training times.
▶ Paying the price of the approximation.

Figure 1: Noising and generative processes in SGM. Image extracted from ?.
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Summary of the previous lecture (3/4)

Recall the Sinkhorn algorithm:

π2n+1 = argmin{KL(π|π2n) : π ∈ P((Rd)2), π1 = ν1} ,

π2n+2 = argmin{KL(π|π2n+1) : π ∈ P((Rd)2), π0 = ν0} .

The Sinkhorn algorithm amounts to solving half-bridges.

This is an alternate projection scheme w.r.t. the Kullback-Leibler
divergence.

Figure 2: Solving half-bridges. Image extracted from Bernton et al. (2019).

4 / 30



Summary of the previous lecture (4/4)

Exponential convergence in the compact setting.

Geometric convergence

Let (πn)n∈N be the sequence obtained with the Sinkhorn algorithm and π⋆ the
Schrödinger bridge. Under mild assumptions, we have

W1(π
n, π⋆) ≤ Cρn .

In fact the main result is a geometric convergence results on the potentials
w.r.t. the Hilbert-Birkhoff metric.

In the non-compact setting we still have convergence.

Convergence of the Sinkhorn algorithm Nutz (2021)

Assume that
∫
Rd exp[r| log π0(x, y)|]d(ν0 ⊗ ν1)(x, y) < +∞ for some r > 1.

Then limn→+∞ KL(πn|π⋆) = 0.
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Outline of the course

We introduce Schrödinger bridges for generative modeling.

Goal of the course:
▶ Introduce the Diffusion Schrödinger Bridge (DSB) algorithm.
▶ Present a conditional extension of DSB.

Outline of the course
▶ Methodology of Diffusion Schrödinger Bridges.
▶ Conditional generative modeling.

Figure 3: A Schrödinger Bridge between two data distributions. Image
extracted from De Bortoli et al. (2021).
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Diffusion Schrödinger Bridge



Outline of this section

In this section:
▶ We present Diffusion Schrödinger Bridge.
▶ A continuous time formulation and a connection with normalizing flows.
▶ Some experimental results.

Figure 4: The Diffusion Schrödinger Bridge (DSB) algorithm. Image extracted from
De Bortoli et al. (2021).
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Methodology
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Revisiting Generative Modeling using Schrödinger Bridges

The Schrödinger Bridge (SB) problem is a classical problem appearing in
applied mathematics, optimal control and probability.

Recall that the dynamical formulation is given by

π⋆ = argmin{KL(π|π0) : π ∈ P((Rd)N+1), π0 = ν0, πN = ν1} ,

▶ ν0 is the data distribution.
▶ ν1 is the easy-to-sample distribution.

If π⋆ is available: XN ∼ ν1, then Xk ∼ π⋆
k|k+1(·|Xk+1) for k ∈ {N − 1, . . . , 0}.

Recall the Sinkhorn algorithm:

π2n+1 = argmin{KL(π|π2n) : π ∈ P((Rd)N+1), πN = ν1} ,

π2n+2 = argmin{KL(π|π2n+1) : π ∈ P((Rd)N+1), π0 = ν0} .

Updating the potentials is not efficient.

▶ Computing the potentials is challenging (dynamic programming).
▶ Sampling from twisted kernels is challenging.
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Solving the Schrödinger Bridge Problem

The SB problem can be solved using Iterative Proportional Fitting (IPF)
(Fortet, 1940; Kullback, 1968), i.e. set π0 = p and for n ≥ 1

π2n+1 = argmin{KL(π|π2n), πN = pprior},

π2n+2 = argmin{KL(π|π2n+1), π0 = pdata}.

This is akin to alternative projection in a Euclidean setting.

limn→+∞ πn = πs,⋆ under regularity conditions (Ruschendorf, 1995; Léger,
2021; De Bortoli et al., 2021).

Explicit solution of the first IPF step

KL(π||π0) = KL(πN |pN ) + EπN [KL(π|N ||p|N )]

Therefore,

π1(x0:N ) = pprior(xN )p(x0:N−1|xN )

= pprior(xN )
∏0

k=N−1pk|k+1(xk|xk+1)

Take-home message: Approximation to first iteration of IPF corresponds to
current Score-Based Generative models.
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Solving the Schrödinger Bridge Problem

The second iteration requires solving

π2 = argmin{KL(π||π1), π0 = pdata}.

Therefore,

π2(x0:N ) = pdata(x0)π1(x1:N |x0)

= pdata(x0)
∏N

k=1π
1
k+1|k(xk+1|xk)

On an algorithmic level:

▶ IPF1: the time-reversal of the forward process π0 = p is initialized by
pprior at time N to define the backward process π1.

▶ IPF2: the time-reversal of the backward process π1 is initialized by pdata
at time 0 to define the forward process π2.

▶ IPF3: the time-reversal of the forward process π2 is initialized by pprior
at time N to define the backward process π3.

▶ ...
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IPF and score networks

Denote the forward processes pn := π2n and backward processes qn := π2n+1.

If pnk+1|k(xk+1|xk) = N (xk+1; xk + γf nk (xk), 2γId) where p0 = p, f 0k = f , then

qnk|k+1(xk|xk+1) ≈ N (xk; xk+1 + γbnk+1(xk+1), 2γId) ,

with bnk+1(xk+1) = −f nk (xk+1) + 2∇ log pnk+1(xk+1).

Similarly, we have

pn+1
k+1|k(xk+1|xk) ≈ N (xk+1; xk + γf n+1

k (xk), 2γId) ,

with f n+1
k (xk) = −bnk+1(xk) + 2∇ log qnk(xk)

Problem: if we store the score networks they accumulate. Memory issue
at step n we need to store 2n networks!
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Approximating IPF via Mean Matching

We change the score-matching to a mean-matching regression. This
allows us to update only 2 networks.

Mean-matching (De Bortoli et al., 2021)

Let Bn
k+1(x) = x + γk+1bnk+1(x), Fn

k (x) = x + γk+1f nk (x) and

qnk|k+1(xk|xk+1) = N (xk; Bn
k+1(xk+1), 2γId),

pnk+1|k(xk+1|xk) = N (xk+1; Fn
k (xk), 2γId).

We have

Bn
k+1 = argmin

B
Epnk,k+1

[||B(Xk+1)− (Xk+1 + Fn
k (Xk)− Fn

k (Xk+1))||2],

Fn+1
k = argmin

B
Eqnk,k+1

[||F(Xk)− (Xk + Bn
k+1(Xk+1)− Bn

k+1(Xk))||2].

We use neural networks Bβn(k, x) ≈ Bn
k(x) and Fαn(k, x) ≈ Fn

k (x), i.e. we
have one forward and one backward neural net.
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PROOF OF THIS RESULT
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Diffusion Schrödinger Bridge

Sample generation: XN ∼ pprior and Xk−1 = BβL(k,Xk) +
√
2γkZk .
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Diffusion Schrödinger Bridge: 2D example

Diffusion Schrödinger Bridge (DSB) gives a solution to the “small time
problem”.

(Approximation of Optimal Transport).
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Continuous time IPF and normalizing flows
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Continuous-Time IPF

IPF can be formulated in continuous time

Π⋆ = argmin{KL(Π||P) : Π ∈ P(C),Π0 = pdata,ΠT = pprior} .

Similarly, we define the IPF (Πn) recursively Π0 = P using

Π2n+1 = argmin{KL(Π||Π2n) : Π ∈ P(C),ΠT = pprior} ,

Π2n+2 = argmin{KL(Π||Π2n+1) : Π ∈ P(C),Π0 = pdata} .

Under regularity conditions, then

(Π2n+1)R → dY2n+1
t = bnT−t(Y

2n+1
t )dt +

√
2dBt ,Y2n+1

0 ∼ pprior ,

Π2n+2 → dX2n+2
t = f n+1

t (X2n+2
t )dt +

√
2dBt ,X2n+2

0 ∼ pdata ,

where

bnt (x) = −f nt (x) + 2∇ log pnt (x) ,

f n+1
t (x) = −bnt (x) + 2∇ log qnt (x) ,

with f 0t (x) = f (x), and pnt , qnt the densities of Π2n
t and Π2n+1

t .
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Some experiments
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Applications: 2D distributions

Data distributions pdata VS distribution at t = 0 for T = 0.2 after 1 and 20 DSB
steps
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Applications: MNIST

Generated samples (N = 12) and two-dimensional visualization of samples
(red) compared to original MNIST data (blue) using pre-trained VAE (d = 784).
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Applications: MNIST

Fréchet Inception Score vs DSB steps. Green line: FID obtained with 1 DSB
step and N = 40

25 / 30



Applications: Downscaled CelebA

Generative model for CelebA after 10 DSB steps with N = 50, T = 0.63
(d = 32× 32× 3 = 3072).
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Applications: Datasets Interpolation

First row: Swiss-roll to S-curve (2D). Step 9 of DSB with T = 1 (N = 50).
From left to right: t = 0, 0.4, 0.6, 1. Second row: EMNIST to MNIST. Step 10 of
DSB with T = 1.5 (N = 30). From left to right: t = 0, 0.4, 1.25, 1.5.
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Conditional Schrödinger Bridge
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Conclusion



Conclusion

We have introduced the Schrödinger Bridge framework.
▶ Introduction of Diffusion Schrödinger Bridge.
▶ Implementation of DSB.
▶ Extensions of DSB.

Figure 5: Diffusion Schrödinger Bridge. Image extracted from De Bortoli
et al. (2021).

Thank you all!
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