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Summary of the previous lecture (1/4)

m In the previous lecture we introduced the Schrédinger bridge problem and
the Sinkhorn algorithm:

» Introduction of Schrodinger bridges.

» Theoretical properties and link with Optimal Transport.

» Introduction of the Sinkhorn algorithm.

» Exponential convergence of the algorithm in compact spaces.

» Convergence results in non-compact space.

m Recall that the dynamical formulation is given by

7* = argmin{KL(x|7°) : m € P(R)"), 70 = vo, 78 = 11},

m Link with generative modeling:

> 7 € P((RY)N) is the discretization of the Ornstein-Ulhenbeck process.
» 1y is the data distribution.

» v = N(0,1d) is the easy-to-sample distribution.
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Summary of the previous lecture (2/4)

m Advantage of the Schrodinger bridge formulation:

» The terminal distribution is Gaussian (no approximation).
» The number of steps is arbitrary.

» This is a more flexible framework.

» Links with Optimal Transport and Stochastic Control.

m Some drawbacks:

» Longer training times.

» Paying the price of the approximation.

Figure 1: Noising and generative processes in SGM. Image extracted from ?.
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Summary of the previous lecture (3/4)

m Recall the Sinkhorn algorithm:

7" = arg min{KL(n|7*") : © € P((R?)?), m =w},

7" = arg min{KL(7|7*"*") : 7 € P((RY)?), o = o} .

m The Sinkhorn algorithm amounts to solving half-bridges.

m This is an alternate projection scheme w.r.t. the Kullback-Leibler
divergence.

Figure 2: Solving half-bridges. Image extracted from Bernton et al. (2019).
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Summary of the previous lecture (4/4)

m Exponential convergence in the compact setting.

Let (7")»ew be the sequence obtained with the Sinkhorn algorithm and 7* the
Schrodinger bridge. Under mild assumptions, we have

’WI(W",W*) < Cp". ‘

m In fact the main result is a geometric convergence results on the potentials
w.r.t. the Hilbert-Birkhoff metric.

m In the non-compact setting we still have convergence.
Nutz (2021

Assume that [, exp[r|log 7°(x, y)[]d(v0 ® 11)(x, y) < +oc for some r > 1.
Then lim,—, 4+ oo KL(7"|7*) = 0.
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Outline of the course

m We introduce Schrodinger bridges for generative modeling.
m Goal of the course:

» Introduce the Diffusion Schrodinger Bridge (DSB) algorithm.
» Present a conditional extension of DSB.

m Outline of the course
» Methodology of Diffusion Schrodinger Bridges.

» Conditional generative modeling.

S

Figure 3: A Schrédinger Bridge between two data distributions. Image
extracted from De Bortoli et al. (2021).
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Diffusion Schrodinger Bridge



Outline of this section

m In this section:

» We present Diffusion Schrédinger Bridge.

> A continuous time formulation and a connection with normalizing flows.
P> Some experimental results.
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Figure 4: The Diffusion Schrodinger Bridge (DSB) algorithm. Image extracted from
De Bortoli et al. (2021).
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Methodology
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Revisiting Generative Modeling using Schrodinger Bridges

m The Schrodinger Bridge (SB) problem is a classical problem appearing in
applied mathematics, optimal control and probability.

m Recall that the dynamical formulation is given by

7 = argmin{KL(7|7°) : € P(RH)"), 70 = v, 7y = 01},

» 1 is the data distribution.

» vy is the easy-to-sample distribution.
m If 7" is available: Xy ~ 1, then Xi ~ 74, (| Xit1) for k € {N —1,...,0}.
m Recall the Sinkhorn algorithm:
" = arg min{KL(n|7*") : © € P(RH"Y), 7n = 11},

7" = arg min{KL(7|x*""") : © € P((RH), m0 = wo} .

Updating the potentials is not efficient.

» Computing the potentials is challenging (dynamic programming).
» Sampling from twisted kernels is challenging.
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Solving the Schrodinger Bridge Problem

m The SB problem can be solved using Iterative Proportional Fitting (IPF)

(Fortet, 1940; Kullback, 1968), i.e. set = pandforn>1
7" = arg min{KL(ﬂ'|ﬂ'2"), TN = Pprior }'

2n+2

72" = arg min{KL(7|7*""")

, Ty = pdata}-
m This is akin to alternative projection in a Euclidean setting.

m lim,_ o 7" = 7** under regularity conditions (Ruschendorf, 1995; Léger,
2021; De Bortoli et al., 2021).

m Explicit solution of the first IPF step
KL(r||7") = KL(7n|pn) + Eny [KL(mn]|pin)]
Therefore,
7 (%0:8) = Pprior (33) p(Xo:n—1]xn)
= pprior(xN)H(,::N,lpk\kﬂ(Xk|xk+1)

m Take-home message: Approximation to first iteration of IPF corresponds to
current Score-Based Generative models.
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Solving the Schrodinger Bridge Problem

m The second iteration requires solving
7* = argmin{KL(7||7"), o = paata}-
Therefore,

WZ(XO:N) = pdata(x())ﬂ'l (X1;N|x())

= paata(%0) [ Ty Ty 1 (e [ 1)

m On an algorithmic level:

» IPF1: the time-reversal of the forward process 7° = p is initialized by
Pprior at time N to define the backward process ml.

» IPF2: the time-reversal of the backward process 7! is initialized by pdata
at time 0 to define the forward process 7°.

» IPF3: the time-reversal of the forward process 72 is initialized by Pprior

at time N to define the backward process 7.
L
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IPF and score networks

m Denote the forward processes p" := 7" and backward processes q" := 72",

m I pf g (o | ) = N (k15 Xk + YA (3), 291a) where p° = p, i = f, then

Qi1 (k| 1) = N (o0 211 + Vi (K1), 2v1a)

with by (x41) = —fi (Xe41) + 2V log pry (1)

m Similarly, we have

P (e |xe) = N (s 2 + 1 (), 294)

with £ (x) = — b, () + 2V log g} (x¢)

m Problem: if we store the score networks they accumulate. Memory issue
at step n we need to store 2n networks!
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Approximating IPF via Mean Matching

m We change the score-matching to a mean-matching regression. This
allows us to update only 2 networks.

Let Bp 1 (x) = x + Y1 bp g1 (%), FE(x) = x + Y1 fi’ (x) and

q2|k+1(xk\xk+1) = N(xk; BZ+1(xk+1)7 z’ﬂd)a
Pk (et |x6) = N (soer1; e (xx), 2v1a).

We have

Biy, = argmin Ep  [|IB(Xit1) — (Xeps + F (X)) — B (X)),
B

Pk k41

FEt= argBmin Eg . [IF(X) — (X + Bipr (Xi1) — Biga (X))

G k1

m We use neural networks Bgn (k, x) & Bi(x) and Fan(k, x) ~ F{(x), i.e. we
have one forward and one backward neural net.
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m PROOF OF THIS RESULT
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Diffusion Schrodinger Bridge

Algorithm 1 Diffusion Schrédinger Bridge
1: forn € {0,...,L} do
2:  while not converged do

3: Sample {X,Z},ijgo, where Xé ~ Ddata» and

X]‘z;Jrl = Fyn (k:7X}i) TtV 27k+1Z]z+1

4: Compute (ffl(ﬁ”) approximating (12)

5: " «+ Gradient Step(¢ (3™))

6:  end while

7:  while not converged do

8: Sample {X ,g}ﬁjjﬁo, where X% ~ Pprior, and

X[y = B (kX)) + VI 2]

9: Compute @{l +1(a™*1) approximating (13)
10 a1« Gradient Step(éiﬂ(a"“))
11:  end while
12: end for

13: Output: (al+1 BL)

Sample generation: Xy ~ pprior and Xi—1 = Bgr (k, Xk) + /27 Zk.
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Diffusion Schrodinger Bridge: 2D example
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m Diffusion Schrédinger Bridge (DSB) gives a solution to the “small time
problem”.

m (Approximation of Optimal Transport).
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Continuous time IPF and normalizing flows
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Continuous-Time IPF

m IPF can be formulated in continuous time
II* = arg min{KL(IL||P) : I € P(C), o = paata, IIT = Pprior } -
Similarly, we define the IPF (II") recursively II° = P using
1" = arg min{KL(II||TT*") : IT € P(C), I = pprior } ,
%2 = arg min{KL(HHHzHI) : I € P(C), Iy = paata} -
m Under regularity conditions, then
(TP = a2 = B (Y )dt + v/2dBe, Y3 ~ pior
I — dX3"2 = £ (X de + V2dBy, X5 ~ paaa
m where

by (x) = —f"(x) + 2V log p}'(x) ,
fTH(x) = b (x) + 2V log g} (x) ,
with £(x) = f(x), and p, g} the densities of II" and IT>""".
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Some experiments

20/30



Applications: 2D distributions

Data distribution

® %
DSB Iteration 1

m Data distributions paaa VS distribution at t = 0 for T = 0.2 after 1 and 20 DSB
steps
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Applications: MNIST

DSB 8

m Generated samples (N = 12) and two-dimensional visualization of samples
(red) compared to original MNIST data (blue) using pre-trained VAE (d = 784).
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Applications: MNIST
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m Fréchet Inception Score vs DSB steps. Green line: FID obtained with 1 DSB

step and N = 40
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Applications: Downscaled CelebA
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m Generative model for CelebA after 10 DSB steps with N = 50, T = 0.63
(d =32 x 32 X 3 =3072).
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Applications: Datasets Interpolation

m First row: Swiss-roll to S-curve (2D). Step 9 of DSB with T = 1 (N = 50).
From left to right: t = 0, 0.4, 0.6, 1. Second row: EMNIST to MNIST. Step 10 of
DSB with T = 1.5 (N = 30). From left to right: t = 0, 0.4, 1.25, 1.5.
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Conditional Schrodinger Bridge
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Conclusion



Conclusion

m We have introduced the Schrodinger Bridge framework.
» Introduction of Diffusion Schrédinger Bridge.

» Implementation of DSB.

» Extensions of DSB.
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Figure 5: Diffusion Schrédinger Bridge. Image extracted from De Bortoli

t=0

et al. (2021).

Thank you all!
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