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1. Abstract
• Patches are central in image processing [7, 1, 5]
• Introduction of patch comparison strategy with

probabilistic guarantees
• Appplication to periodicity detection

3. A contrario framework
Classic a contrario framework Dpu, π0, εq, [6]:

Input image u

Define event Eu

Probability in
image model
Pu„π0pEuq

Decision
1Pu„π0 pEuqďε

Significant events

Image function

Image model,
p.d.f π0

Threshold
ε :“ NFA

nb of tests

Dpu, π0, εq

Goal: Find most similar patches in image (position
maps) using a contrario methods.

4. Patch similarity
• s similarity function between patches

• π0 microtexture model, usually Gaussian [4]

• Two cases of matching:

1. internal: Eu :“ spu,uq ď spu, uq
(periodicity analysis)

2. template: Eu :“ spu, u0q ď spu, u0q
(texture synthesis)

Proposition (c.d.f and a contrario)
We have

1Pu„f pEuqďε “ 1F pspu,uqqďε “ 1spu,uqďF´1pεq

♥Take-home 1: A contrario similarity
detection is simply thresholding with
adaptive threshold.

Question: How to compute these c.d.f?

1. Focus on `2 Ñ Euclidean structure

2. Depending on the similarity function, in-
ternal or template matching cases can be
computed exactly

Theorem (Internal matching and `2)
Let spu, uqpxq “ }1ωpu ´ τxpuqq}

2
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where ω Ă Ω is a patch index. Suppose
u „ N p0, Cq then

spu,uqpxq „
ÿ

yPω

λyξy

with λy eigenvalues of Cx “ 2C´τxC´τ´xC
and ξy independent χ2 r.v.

Conclusion
• Euclidean similarities allow for fast compu-

tation
• Thresholds for similarity detection are derived

from a contrario methods
• Periodicity detection algorithm, links with

co-occurence matrix methods [2]
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2. Comparing patches
Let u be an image defined over Ω Ă Z2.
To compare patches in images several comparison
functions are available [3]:
• `p norms (especially `1, `2 and `8)

• Directional measurements (Euclidean scalar prod-
uct, angle measurements)

`2 `1 `8

Scalar product Cosine

20 best
matches for

top-left
patch.

5. Periodicity analysis
Goal: Given u with a periodic pattern P find the underlying lattice L “ pe1, e2q. Let X be a set of vertices.

Assumption (Deformed lattice hypothesis)

@x P X,@y P Nx, Dpmtx,yu, ntx,yuq P Z2, x´ y “ mtx,yue1 ` ntx,yue2 ` σZtx,yu

where Nx is a neighborhood of x and Ztx,yu are independent standard Gaussian r.v.

♥Take-home 2: This hypothesis is naturally translated in a graphical model and reduces to
parameters estimation of pe1, e2,mtx,yu, ntx,yu, σq.

LpXq
loomoon

log-likelihood

:“ ´C logpσ2
q ´

1

2σ2

¨

˝

ÿ

xPX,yPNx

}pmtx,yue1 ` ntx,yue2q ´ px´ yq}
2
`

regularization
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rpmtx,yu, ntx,yu, e1, e2, δ, ηq

˛

‚
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Eδ,ηpmtx,yu,ntx,yu,e1,e2q

Algorithm 1 Lattice detection – Lpδ, η,Nq
Require: δ, η and N set by user
for n “ 0 to N ´ 1 do
pm̃tx,yu, ñtx,yuq Ð argmin

R2
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n
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`
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pen`1
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2 q Ð argmin
pR2q
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E0,ηpm
n`1
tx,yu, n

n`1
tx,yu, e1, e2q

end for

Dpu, π0, εq Lpδ, η,Nq

duration “ 7.8s duration “ 8.6s

Proposition (Finite time convergence)
Under conditions on pδ, ηq Algorithm 1 converges in finite time. Moreover the log-likelihood is in-
creased at each step.

Problems & remarks:
• Conditions not satisfied in practice, but finite time convergence still observed
• Can be written as EM algorithm


