Patches, a contrario framework and
periodicity detection

Valentin De Bortoli', Agnés Desolneux!, Bruno Galerne?, Arthur Leclaire?
LCMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
? Laboratoire MAP5 (UMR CNRS 8145), Université Paris Descartes, Sorbonne Paris Cité

LABORATOIRE \

CfTILA

Centre de Mathématiques

et de Leurs Applications

1. Abstract

e Patches are central in image processing |7, 1, 5|
e Introduction of patch comparison strategy with

probabilistic guarantees
e Appplication to periodicity detection

2. Compari

Let u be an image defined over Q c Z2.
To compare patches in images several comparison

functions are available [3]:
e /P norms (especially /', ¢* and ()

e Directional measurements (Euclidean scalar prod-
uct, angle measurements
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5. Periodicity analysis
Goal:

3. A contra

Classic a contrario framework D(u, mo,€), |6]:
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Goal: Find most similar patches in image (position
maps) using a contrario methods.

Given u with a periodic pattern P find the underlying lattice £ = (e1,e2). Let X be a set of vertices.

Assumption (Deformed lattice hypothesis)

where N is a neighborhood of x and Z;, ,3 are independent standard Gaussian r.v.
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OTake-home 2: This hypothesis is naturally translated in a graphical model and reduces to

parameters estimation of (e1, ez, My 41, Nz 1, 0).
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[ Image function j

Algorithm 1 Lattice detection — L(4, 7, V)

Require: 0, n and N set by user
for n=0to N —1 do

(M 2,y Nz,yy) < argmin Eso(myz g1, Nz,y}, €1, €2 )

R2

n+1 n+1

(m{aﬁ,y}’n{ﬂc,y}) « argmin (Eso(round (1 (e}, figa,yy)) - €1, €2 ), Bs,0(M s 43> iz,yy, €15 €2))

(6?+17 €§+1) < argmin EO,"?(m?g::;}) n?;::;}v €1, 62)
(R?)
end for

duration = &8.6s
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Proposition (Finite time convergence)
Under conditions on (9,7) Algorithm 1 converges in finite time. Moreover the log-likelihood is in-
creased at each step.

Problems & remarks:

e Conditions not satisfied in practice, but finite time convergence still observed

e ('an be written as M alcorithm

4. Patch si

e s similarity function between patches
e 7T microtexture model, usually Gaussian |[4]
e Two cases of matching:

1. internal: &, := s(u,u) < s(u,u)

(periodicity analysis)

2. template: &, := s(u, ug) < s(u, ug)

(texture synthesis)

Proposition (c.d.f and a contrario)
We have

1Pu~f(5u)<€ — 1F(s(u,u))<6 — 1s(u,u)<F—1(€)

OTake-home 1: A contrario similarity
detection is simply thresholding with
adaptive threshold.

Question: How to compute these c.d.t?

1. Focus on ¢? — Euclidean structure

2. Depending on the similarity function, in-
ternal or template matching cases can be
computed ezxactly

Theorem (Internal matching and ¢2)
Let s(u,u)(z) = [lu(u — 72(u))3
where w < () is a patch index. Suppose

u ~ N(0,C) then

s(u,u)(z) ~ > A,

| YEW
. with A\, eigenvalues of C, = 20 —7,C—7_,C
and §, independent xa r.v.

e Fuclidean similarities allow for fast compu-
tation

e Thresholds for similarity detection are derived
from a contrario methods

e Periodicity detection algorithm, links with
co-occurence matrix methods |2]
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