

Patches, a contrario framework and periodicity detection

Valentin De Bortoli¹, Agnès Desolneux¹, Bruno Galerne², Arthur Leclaire¹ ¹CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France ²Laboratoire MAP5 (UMR CNRS 8145), Université Paris Descartes, Sorbonne Paris Cité

1. Abstract

- Patches are central in image processing [7, 1, 5] • Introduction of patch comparison strategy with
- probabilistic guarantees
- Appplication to periodicity detection

2. Comparing patches

- Let u be an image defined over $\Omega \subset \mathbb{Z}^2$. To compare patches in images several comparison functions are available [3]: • ℓ^p norms (especially ℓ^1 , ℓ^2 and ℓ^{∞})

3. A contrario framework

Classic a contrario framework $D(u, \pi_0, \varepsilon)$, [6]:

4. Patch similarity

• *s* similarity function between patches

• π_0 microtexture model, usually Gaussian [4]

ABORATOIRE

 $\mathbf{)}\mathbf{5}$

- Two cases of matching:
 - 1. internal: $\mathcal{E}_u := s(\mathbf{u}, \mathbf{u}) \leq s(u, u)$ (periodicity analysis)
 - 2. template: $\mathcal{E}_u := s(\mathbf{u}, u_0) \leq s(u, u_0)$ (texture synthesis)

Proposition (c.d.f and a contrario) We have

Goal: Find most similar patches in image (position) maps) using a contrario methods.

5. Periodicity analysis

Goal: Given u with a periodic pattern P find the underlying lattice $\mathcal{L} = (e_1, e_2)$. Let X be a set of vertices.

(Assumption (Deformed lattice hypothesis)

 $\forall x \in X, \forall y \in \mathcal{N}_x, \exists (m_{\{x,y\}}, n_{\{x,y\}}) \in \mathbb{Z}^2, x - y = m_{\{x,y\}}e_1 + n_{\{x,y\}}e_2 + \sigma Z_{\{x,y\}}e_2$

where \mathcal{N}_x is a neighborhood of x and $Z_{\{x,y\}}$ are independent standard Gaussian r.v.

$$\mathbb{1}_{P_{\mathbf{u}\sim f}(\mathcal{E}_u)\leqslant\varepsilon} = \mathbb{1}_{F(s(u,u))\leqslant\varepsilon} = \mathbb{1}_{s(u,u)\leqslant F^{-1}(\varepsilon)}$$

 \heartsuit **Take-home 1:** A contrario similarity detection is simply thresholding with adaptive threshold.

Question: How to compute these c.d.f?

- 1. Focus on $\ell^2 \rightarrow$ Euclidean structure
- 2. Depending on the similarity function, internal or template matching cases can be computed *exactly*

Theorem (Internal matching and ℓ^2) Let $s(u, u)(x) = \|\mathbb{1}_{\omega}(u - \tau_x(u))\|_2^2$ where $\omega \subset \Omega$ is a patch index. Suppose $\mathbf{u} \sim \mathcal{N}(0, C)$ then

 $s(\mathbf{u},\mathbf{u})(x) \sim \sum \lambda_y \xi_y$

 \heartsuit Take-home 2: This hypothesis is naturally translated in a graphical model and reduces to parameters estimation of $(e_1, e_2, m_{\{x,y\}}, n_{\{x,y\}}, \sigma)$. regularization $\underbrace{L(X)}_{x \in X, y \in \mathcal{N}_x} := -C \log(\sigma^2) - \frac{1}{2\sigma^2} \left(\sum_{x \in X, y \in \mathcal{N}_x} \| (m_{\{x,y\}} e_1 + n_{\{x,y\}} e_2) - (x-y) \|^2 + \widetilde{r(m_{\{x,y\}}, n_{\{x,y\}}, e_1, e_2, \delta, \eta)} \right)$ log-likelihood $E_{\delta,\eta}(m_{\{x,y\}},n_{\{x,y\}},e_1,e_2)$ **Algorithm 1** Lattice detection $-L(\delta, \eta, N)$ **Require:** δ , η and N set by user tation for n = 0 to N - 1 do $(\tilde{m}_{\{x,y\}}, \tilde{n}_{\{x,y\}}) \leftarrow \operatorname{argmin} E_{\delta,0}(m_{\{x,y\}}, n_{\{x,y\}}, e_1^n, e_2^n)$ $(m_{\{x,y\}}^{n+1}, n_{\{x,y\}}^{n+1}) \leftarrow \operatorname{argmin} (E_{\delta,0}(\operatorname{round}((\tilde{m}_{\{x,y\}}, \tilde{n}_{\{x,y\}})), e_1^n, e_2^n), E_{\delta,0}(m_{\{x,y\}}^n, n_{\{x,y\}}^n, e_1^n, e_2^n)) \\ (e_1^{n+1}, e_2^{n+1}) \leftarrow \operatorname{argmin} E_{0,\eta}(m_{\{x,y\}}^{n+1}, n_{\{x,y\}}^{n+1}, e_1, e_2)$ end for

with λ_y eigenvalues of $C_x = 2C - \tau_x C - \tau_{-x} C$ and ξ_{u} independent χ_{2} r.v.

Conclusion

- Euclidean similarities allow for **fast compu**-
- Thresholds for similarity detection are derived from a contrario methods
- Periodicity detection algorithm, links with **co-occurence** matrix methods [2]

Bibliography

- Antoni Buades, Bartomeu Coll, and J-M. Morel. "A [1] non-local algorithm for image denoising". In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 2. IEEE. 2005, pp. 60–65.
- Richard W. Conners and Charles A. Harlow. "Toward a 2 structural textural analyzer based on statistical methods". In: Computer Graphics and Image Processing

Proposition (Finite time convergence) Under conditions on (δ, η) Algorithm 1 converges in **finite time**. Moreover the log-likelihood is increased at each step.

Problems & remarks:

- Conditions not satisfied in practice, **but** finite time convergence still observed
- Can be written as **EM** algorithm

- Charles-Alban Deledalle, Loïc Denis, and Florence Tupin. "How to compare noisy patches? Patch similarity beyond Gaussian noise". In: International journal of computer vision 99.1 (2012), pp. 86–102.
- Bruno Galerne, Yann Gousseau, and Jean-Michel |4| Morel. "Random phase textures: Theory and synthesis". In: IEEE Transactions on image processing 20.1 (2011), pp. 257–267.
- $\left[5\right]$ Kaiming He and Jian Sun. "Image completion approaches using the statistics of similar patches". In: IEEE transactions on pattern analysis and machine intelligence 36.12 (2014), pp. 2423–2435.
- David Mumford and Agnès Desolneux. Pattern theory: the stochastic analysis of real-world signals. CRC Press, 2010.
- Lara Raad, Agnès Desolneux, and Jean-Michel Morel. "Conditional Gaussian models for texture synthesis". In: International Conference on Scale Space and Variational Methods in Computer Vision. Springer. 2015, pp. 474–485.