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Abstract. In this work we introduce a statistical framework in order to analyze the spatial redundancy in
natural images. This notion of spatial redundancy must be defined locally. To do so, we define
an auto-similarity function which, given one image, computes a dissimilarity measurement between
patches. To derive a criterion for taking a decision on the similarity between two patches we present
an a contrario model. Namely, two patches are said to be similar if the associated dissimilarity
measurement is unlikely to happen in a background model. Choosing Gaussian random fields as
background models we derive non-asymptotic expressions for the probability distribution function of
similarity measurements.We present an algorithm in order to assess redundancy in natural images
and discuss applications in denoising, periodicity analysis and texture ranking.
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1. Introduction. In many image processing applications, using local information combined
with the knowledge of long-range spatial arrangement is crucial. The spatial redundancy on
sub-images called patches, encodes the small scale structure of the image as well as its large
scale organization. More precisely, local information is encoded in the patch content and the
large scale organization is contained in the redundancy of this information across the patches
of the image. For example, patch-based inpainting techniques, such as [10, 33], assign patches
of a known region to patches of an unknown region. Namely, each patch position on the border
of the unknown region is associated to an offset corresponding to the best patch according to
the partial available information. In [33] the authors replace the search on the whole image
by a search among the most redundant offsets in the known region. This allows the authors
of [33] to retrieve long-range spatial structure in the unknown part of the image. Another
famous application of spatial redundancy can be found in denoising, with the seminal work
(Non-Local means) of Buades and coauthors [5], in which the authors propose to replace a
noisy patch by the mean over all spatially redundant patches.

Last but not least, spatial redundancy is of crucial importance in exemplar-based texture
synthesis. In this paper we define textures as images containing repeated patterns but also
reflecting randomness in the arrangement of these patterns. Among textures, one important
class is given by the microtextures in which no individual object can be clearly delimited. In
the periodic case, a more precise definition will be given in Definition 4. These microtexture
models can be described by Gaussian random fields [62, 27, 42, 68]. Parametric models using
features such as wavelet transform coefficients [55], scattering transform coefficients [59] or
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convolutional neural network outputs [29] have been proposed in order to derive image models
with more structure. On the other hand, non-parametric patch-based algorithms such as
[25, 24, 38, 56, 28] propose to use most similar patches in order to fill the new texture images,
similarly to inpainting techniques.

All these techniques lift images in spaces with dimensions higher than the original image
space, and make use of the redundancy of the lifting to extract important structural informa-
tion. There exist two main types of lifting: feature extraction or patch extraction. Feature
extraction relies on the use of filters, linear or non-linear, which aim at selecting substantial
local information. Among popular kernels are oriented and multiscale filters, which happened
to be identified as early processing in mammal vision systems [13, 35]. These last years have
seen the rise of neural networks in which the filter dictionary is no longer given as an input but
learned through a data-driven optimization procedure [60]. On the other hand, patch-based
methods rely on the assumption that image processing tasks are simplified when conducted in
the higher dimensional patch space.

Every analysis performed in a lifted space, built via feature extraction or patch extraction,
relies on the comparison of points in this space. In patch-based lifted spaces, we aim at finding
dissimilarity functions such that two patches are visually close if the dissimilarity measurement
between them is small. In this paper we focus on the square Euclidean distance but other
choices could be considered [65, 64, 15, 17].

This leads us to consider a statistical hypothesis testing framework to assess similarity
(or dissimilarity) between patches. The null hypothesis is defined as the absence of local
structural similarities in the image. Reciprocally the alternative hypothesis is defined as the
presence of such similarities. There exists a wide variety of tractable models exhibiting no
similarity at long-range, like Gaussian random fields [62, 27, 42, 68] or spatial Markov random
fields [11], whereas sampling and inference in very structured models rely on optimization
procedures and may be computationally expensive, their distribution being the limit of some
Markov chain [70, 47] or some stochastic optimization procedure [4]. This encourages us to
consider an a contrario approach, i.e. we do not consider the alternative hypothesis and focus
on rejecting the null hypothesis. This framework was successfully applied in many areas of
image processing [14, 19, 20, 1, 7] and aims at identifying structure events in images. This
statistical model takes its roots in the fundamental work of the Gestalt theory [21]. One of its
principle, the non-accidentalness principle [46] or Helmholtz principle [69, 20], states that no
structure is perceived in a noise model. To be precise, in our case of interest, we want to assess
that no spatial redundancy is perceived in microtexture models. This methodology allows us
to only design a locally structured background model to define a null hypothesis. Combining
a contrario principles and patch-based measures, we propose an algorithm to identify auto-
similarities in images.

We then turn to the implementation of such an algorithm and illustrate the diversity of
its possible applications with three examples: denoising, lattice extraction, and periodicity
ranking of textures. In our denoising application we propose a modification of the celebrated
Non-Local means algorithm [5] (NL-means) by inserting a threshold in the selection of similar
patches. Using an a contrario model we are able to give probabilistic control on the patch
reconstruction.

We then focus on periodicity detection and, more precisely, lattice extraction. Periodicity
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in images was described as an important feature in early mathematical vision [32]. Most of
the proposed methods to analyze periodicity rely on global measurements such as the modulus
of the Fourier transform [49] or the autocorrelation [43]. These global techniques are widely
used in crystallography where lattice properties, such as the angle between basis vectors, are
fundamental [50, 58]. Since all of our measurements are local, we are able to identify periodic
similarities even in images which are not periodic but present periodic parts, for instance if
two crystal structures are present in a single crystallography image. We draw a link between
the introduced notion of auto-similarity and the inertia measurement in co-occurence matrices
[32]. We then introduce our lattice proposal algorithm which combines a detection map, i.e.
the output of our redundancy detection algorithm, and graphical model techniques, as in [53],
in order to extract lattice basis vectors.

Our last application concerns texture ranking. Since the definition of texture is broad and
covers a wide range of images, it is a natural question to identify criteria in order to distinguish
textures. In [45], the authors use a classical measure for distinguishing textures: regularity. In
this work, we narrow this criterion and restrict ourselves to the study of periodicity in texture
images. The proposed graphical model inference naturally gives a quantitative measurement
for texture periodicity ranking. We give an example of ranking on 25 images of the Brodatz
set.

Our paper is organized as follows. An a contrario framework for local similarity detection
is proposed in Section 2. In the a contrario framework, a background model, corresponding to
the null hypothesis, is required. The consequence of choosing Gaussian models as background
models is investigated and a redundancy detection algorithm is proposed in Section 3. The
rest of the paper is dedicated to some examples of application of the proposed framework.
After reviewing one of the most popular method in image denoising we introduce a denoising
algorithm in Section 4.1 and present our experimental results in Section 4.2. Local dissimilarity
measurements can be used as periodicity detectors. The link between the locality of the
introduced functions and the literature on periodicity detection problems is investigated in
Section 5.1. An algorithm for detecting lattices in images is given in Section 5.2 and numerical
results are presented in Section 5.3. In our last experiment in Section 5.4, we introduce a
criterion for measuring texture periodicity. We conclude our study and discuss future work in
Section 6.

2. An a contrario framework for auto-similarity. We first introduce a notion of dissimi-
larity between patches of an input image.

Definition 1 (Auto-similarity). Let u be an image defined over a domain Ω “ J0,M ´ 1K2 Ă

Z2, withM P Nzt0u. Let ω Ă Z2 be a patch domain. We introduce Pωpuq “ p 9upyqqyPω the patch
at position ω in the periodic extension of u to Z2, denoted by 9u. We define the auto-similarity
with patch domain ω and offset t P Z2 by

(2.1) ASpu, t, ωq “ }Pt`ωpuq ´ Pωpuq}
2
2 .

The auto-similarity computes the distance between a patch of u defined on a domain ω and
the patch of u defined by the domain ω shifted by the offset vector t. In what follows, we
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introduce an a contrario framework on the auto-similarity. This framework will allow us to
derive an algorithm for detecting spatial redundancy in natural images. In this section we
fix an image domain Ω Ă Z2 and a patch domain ω Ă Ω. We recall that our final aim is to
design a criterion that will answer the following question: are two given patches similar? This
criterion will be given by the comparison between the value of a dissimilarity function and a
threshold a. We will define the threshold a so that few similarities are identified in the null
hypothesis model, i.e. similarity does not occur “just by chance”. Thus we can reformulate the
initial question: is the similarity output of a dissimilarity function between two patches small
enough? Or, to be more precise, how can we set the threshold a in order to obtain a criterion
for assessing similarity between patches?

This formulation agrees with the a contrario framework [21] which states that geometrical
and/or perceptual structure in an image is meaningful if it is a rare event in a background
model. This general principle is sometimes called the Helmholtz principle [69] or the non-
accidentalness principle [46]. Therefore, in order to control the number of similarities identified
in the background model, we study the probability density function of the auto-similarity
function with input random image U over Ω. We will denote by P0 the probability distribution
of U over RΩ, the images over Ω. We will assume that P0 is a microtexture model, see
Definition 4 below for a precise definition of such a model. We define the following significant
event which encodes spatial redundancy: ASpu, t, ωq ď aptq, where a, the threshold function,
is defined over the offsets (t P Z2) but also depends on other parameters such as ω or P0. The
dependency of a with respect to t cannot be omitted. For instance, even in a Gaussian white
noise W , the probability distribution function of ASpW, t, ωq depends on t.

The Number of False Alarms (NFA) is a crucial quantity in the a contrario methodology.
A false alarm is defined as an occurrence of the significant event in the background model P0.
We recall that in our model the significant event is patch redundancy. This test must be
conducted for every possible configurations of the significant event, i.e. in our case we test
every possible offset t. The NFA is then defined as the expectation of the number of false
alarms over all possible configurations. Bounding the NFA ensures that the probability of
identifying k offsets with spatial redundancy is also bounded, see Proposition 1. In what
follows we give the definition of the NFA in the spatial redundancy context.

Definition 2 (NFA). Let U „ P0, where P0 is a background microtexture model. We define
the auto-similarity probability map AP for any t P Ω, ω Ă Ω and a P RΩ by

(2.2) APpt, ω, aq “ P0 rASpU, t, ωq ď aptqs .

We define the auto-similarity expected number of false alarms ANFA by

(2.3) ANFApω, aq “
ÿ

tPΩ

APpt, ω, aq .

Note that APpt, ω, aq corresponds to the probability that ω`t is similar to ω in the background
model U . For any t P Ω, the cumulative distribution function of the auto-similarity random
variable ASpU, t, ωq under P0 evaluated at value αptq is given by APpt, ω, αptqq. We denote
by q ÞÑ AP´1pt, ω, qq the inverse cumulative distribution function, potentially defined by a
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generalized inverse (AP´1pt, ω, qq “ inftαptq P R, APpt, ω, αptqq ě qu), of the auto-similarity
random variable for a fixed offset t, with q P p0, 1q a quantile. We now have all the tools to
control the number of detected offsets in the background model.

Definition 3 (Detected offset). Let u P RΩ be an image, ω Ă Ω a patch domain, and a P RΩ.
An offset t is said to be detected with respect to a, if ASpu, t, ωq ď aptq.

Note that a detected offset in U „ P0 corresponds to a false alarm in the a contrario model. In
what follows we suppose that the cumulative distribution function of ASpU, t, ωq is invertible
for every t P Ω. This ensures that for any t P Ω and q P p0, 1q we have

(2.4) AP
`

t, ω,AP´1 pt, ω, qq
˘

“ q .

Proposition 1. Let NFAmax ě 0 and for all t P Ω define aptq “ AP´1 pt, ω,NFAmax {|Ω|q.
We have that for any n P Nzt0u,

ANFApω, aq “ NFAmax and P0 r“at least n offsets are detected in U ” s ď
NFAmax

n
.

Proof. Using (2.3), and aptq “ AP´1 pt, ω,NFAmax {|Ω|q, we get

ANFApω, aq “
ÿ

tPΩ

APpt, ω, aq “
ÿ

tPΩ

AP
`

t, ω,AP´1 pt, ω,NFAmax {|Ω|q
˘

“ NFAmax ,

where the last equality is obtained using (2.4). Concerning the upper-bound, we have, using
the Markov inequality and (2.2), for any n P Nzt0u

P0 r“at least n offsets are detected in U ” s “ P0

«

ÿ

tPΩ

1ASpU,t,ωqďaptq ě n

ff

ď

ř

tPΩ E
“

1ASpU,t,ωqďaptq
‰

n
ď

NFAmax

n
,

where 1ASpU,t,ωqďaptq “ 1 if ASpU, t, ωq ď aptq and 0 otherwise.

Thus, setting a as in Proposition 1, we have that an offset t P Ω is detected for an
image u P RΩ if

(2.5) ASpu, t, ωq ď AP´1 pt, ω,NFAmax {|Ω|q .

This a contrario detection framework can then be simply rewritten as 1) computing the auto-
similarity function with input image u, 2) thresholding the obtained dissimilarity map with the
inverse cumulative distribution function of the computed dissimilarity function under P0. The
computed threshold depends on the offset and Proposition 1 ensures probabilistic guarantees
on the expected number of detections under P0. Using the inverse property of the inverse
cumulative distribution function and (2.5), we obtain that an offset is detected if and only if

(2.6) P0 rASpU, t, ωq ď ASpu, t, ωqs “ AP pt, ω,ASpu, t, ωqq ď NFAmax {|Ω| .

Therefore, the thresholding operation can be conducted either on ASpu, t, ωq, see (2.5), or on
AP pt, ω,ASpu, t, ωqq, see (2.6). This property will be used in Section 3.2 to define a similarity
detection algorithm based on the evaluation of ASpu, t, ωq.
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3. Gaussian model and detection algorithm.

3.1. Choice of background model. In this section we compute AP pt, ω, αq, i.e. the cu-
mulative distribution function of the similarity function under the null hypothesis model, with
a Gaussian background model. Indeed, if the background model is simply a Gaussian white
noise the similarities identified by the a contrario algorithm are the ones that are not likely to
be present in the Gaussian white noise image model. More generally, we consider stationary
Gaussian random fields defined in the following way: we introduce an image f over RΩ which
contains the microtexture information we want to discard in our a contrario model. In what
follows we give the definition of the microtexture model associated to f .

Definition 4 (Microtexture model). Let f P RΩ, we define the associated microtexture model
U by setting, U “ f ˚W , where ˚ is the periodic convolution operator over Ω given by v˚wpxq “
ř

yPΩ 9vpyq 9wpx´ yq and W is a white noise over Ω, i.e. pW pxqqxPΩ are i.i.d. N p0, 1q random
variables.

Given an image u P RΩ, a microtexture model can be derived considering

(3.1) mu “
ÿ

xPΩ

upxq{|Ω| , and U “ |Ω|´1{2pu´muq ˚W .

Note that if U is given by (3.1) we have for any x,y P Ω

(3.2) E rUpxqs “ 0 and Cov rUpxq, Upyqs “ |Ω|´1
ÿ

zPΩ

p 9upzq ´muqp 9upz ´ py ´ xqq ´muq .

We refer to [27] for a mathematical study of this model.

(a) (b) (c)

Figure 1: Examples of microtexture models. In (a) we present an original 256 ˆ 256
image. In (b) and (c) we derive two microtexture models. In (b) we present a Gaussian
white noise and in (c) the microtexture model given by (3.1). Note that (c) shows more local
structure than (b).
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3.2. Detection algorithm. In this section, Ω is a finite square domain in Z2. We fix ω Ă Ω.
We also define f , a function over Ω. We consider the Gaussian random field U “ f ˚W , where
W is a Gaussian white noise over Ω. We denote by Γf the autocorrelation of f , i.e. Γf “ f ˚ f̌
where for any x P Ω, f̌pxq “ fp´xq. We introduce the offset correlation function ∆f defined
for any t,x P Ω by

(3.3) ∆f pt,xq “ 2Γf pxq ´ Γf px ` tq ´ Γf px ´ tq .

The following proposition, proved in [15], gives the explicit probability distribution function
of the squared `2 auto-similarity.

Proposition 2 (Squared `2 auto-similarity function exact probability distribution function). Let
Ω “ J0,M ´1K2 with M P Nzt0u, ω Ă Ω, f P RΩ and U “ f ˚W where W is a Gaussian white
noise over Ω. Then, for any t P Ω, ASpU, t, ωq has the same distribution as

ř|ω|´1
k“0 λkpt, ωqZk,

with Zk independent chi-square random variables with parameter 1 and λkpt, ωq the eigenvalues
of the covariance matrix Ct associated with function ∆f pt, ¨q restricted to ω, defined in (3.3),
i.e for any x1,x2 P ω, Ctpx1, x2q “ ∆f pt,x1 ´ x2q.

As a consequence if f “ δ0, i.e. U is a Gaussian white noise, and tx` t,x P ωu X ω “ H, i.e.
there is no overlapping between the patch domain ω and its shifted version, then ASpU, t, ωq
is a chi-square random variable with parameter |ω|.

In order to compute the cumulative distribution function of a quadratic form of Gaussian
random variables we must deal with two issues: 1) the computation of the eigenvalues λkpt, ωq
might be time-consuming and efficient methods must be developed ; 2) the exact computation
of the cumulative distribution function of a quadratic form of Gaussian random variables re-
quires the use of heavy integrals, see [36]. In [15] a projection method is introduced in order
to easily compute approximated eigenvalues, with equality when ω “ Ω. The so-called Wood
F method (see [66, 3]) shows the best trade-off between accuracy and computational cost
to approximate the cumulative distribution function of quadratic forms in Gaussian random
variables with given weights. It is a moment method of order 3, fitting a Fisher-Snedecor
distribution to the empirical one. Note that in [44] another moment method of order 3 is pro-
posed. In what follows, we assume that we can compute the cumulative distribution function
of ASpU, t, ωq and we refer to [15] for further details.

In Algorithm 3.1 we propose an a contrario framework for spatial redundancy detection.
We suppose that u and ω are provided by the user. Using Proposition 1 and (2.6) , we say that
an offset is detected if AP pt, ω,ASpu, t, ωqq ď NFAmax {|Ω|. The value NFAmax is supposed
to be set by the user. The background model used in the auto-similarity detection is the one
given in (3.1). Therefore, Proposition 2 and the discussion that follows can be used to compute
an approximation of APpt, ω,ASpu, t, ωqq. In Figure 2 we apply Algorithm 3.1 to a texture
image.

4. Denoising.

4.1. NL-means and a contrario framework. In this section we apply the a contrario
framework to the context of image denoising and propose a simple modification of the cele-
brated image denoising algorithm Non-Local Means (NL-means). This algorithm was intro-
duced in the seminal paper of Buades et al. [5] and was inspired by the work of Efros and
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Algorithm 3.1 Auto-similarity detection
1: function autosim-detection(u, ω, NFAmax)
2: for t P Ω do
3: val Ð ASpu, t, ωq
4: Pmapptq Ð APpt, ω, valq Ź APpt, ω, valq approximation detailed in Section 3.2
5: Dmapptq Ð 1PmapptqďNFAmax{|Ω|

6: end for
7: return the images Pmap, Dmap

8: end function

(a) (b) (c) (d) (e)

Figure 2: Outputs of Algorithm 3.1. In (a) we present an original 256 ˆ 256 image.
In (b) we present the associated microtexture model given by (3.1). In (c) the green patch is
the input patch, i.e. Pωpuq. In this experiment NFAmax is set to 1. In (d), respectively (e),
we present the output Pmap, respectively Dmap, of Algorithm 3.1. In (c) we show in red the
patches corresponding to the identified offsets in Pmap.

Leung in texture synthesis [25]. It was also independently introduced in [2]. This algorithm
relies on the simple idea that denoising operations can be conducted in the lifted patch space.
In this space the usual Euclidean distance acts as a good similarity detector and we can obtain
a denoised patch by averaging all the patches with weights that depend on this Euclidean
distance. Usually the weight function is set to have exponential decay, but it was suggested in
[30, 57, 23] to use compactly supported weight functions in order to avoid the loss of isolated
details. Since its introduction, many algorithms derived from NL-means have been proposed
in order to embed the algorithm in general statistical frameworks [22, 40] or to take into ac-
count the underlying geometry of the patch space [34]. Among the state-of-the-art denoising
algorithms, see [41] for a review, we consider Block-Matching and 3D Filtering (BM3D) [12]
to compare our algorithm with.

There exist several works combining a contrario models and denoising tasks. Coupier et
al. in [9] propose to combine morphological filters and a testing hypothesis framework to
remove impulse noise. In [18] Delon and Desolneux compare different statistical frameworks
to perform denoising with Gaussian noise or impulse noise. The a contrario model was also
successfully used to deal with speckle noise [26] and quasi-periodic noise [61], and rely on
the thresholding of wavelet or Fourier coefficients. In [37], Kervrann and Boulanger derive
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approximated probabilistic thresholds using χ2 probability distribution functions. In [67] the
authors propose a testing framework in order to estimate thresholds. The expressions they
derive also relies on an approximation of the probability distribution of the squared Euclidean
norm between two patches in Gaussian white noise.

Following a standard extension procedure of the NL-means algorithm we consider a thresh-
old version of it, see Algorithm 4.1. In what follows we fix a “clean”, or original, image u0 defined
over Ω, a finite rectangular domain of Z2, a noisy image u “ u0`σw, with w a realization of a
standard Gaussian random fieldW and σ ą 0 the standard deviation of the noise. In all of our
experiments we suppose that σ is known. Note that there exist several algorithms to estimate
σ from real images, see [54] for instance. Our goal is to retrieve u0 based on the information
in u. We consider the lifted version of u in a patch space. Let ω0 be a centered 8 ˆ 8 patch
domain. For a patch window ω “ x` ω0 the patch search window T will be defined by

(4.1) T “
 

t P Z2, t` ω Ă Ω, }t}8 ď c
(

,

with c P N. |T | denotes the cardinality of T . There exists a large literature concerning the
setting of c and ω0, see [23]. Note that the locality of the patch window was assessed to be
a crucial feature of NL-means [31]. Suppose we have a collection of denoised patches p̂pu, ωq
for all patch domains ω, we obtain a pixel at position x in the denoised image û using the
following average, see [6],

(4.2) ûpxq “ |tt P Ω, s.t x P t` ω Ă Ωu|´1
ÿ

tPΩ, s.t xPt`ωĂΩ

p̂pu, t` ωqpxq .

We now introduce our modification of NL-means. We suppose that we are provided a threshold
function a. The choice of such a function is discussed in Proposition 3.

Algorithm 4.1 NL-means threshold
1: function NL-means-threshold(u, σ, ω0, c, a)
2: for x P Z2, x` ω0 Ă Ω do
3: ω Ð x` ω0

4: T Ð defined by (4.1)
5: Nωpuq Ð 0
6: p̂pu, ωq Ð 0
7: for t P T do
8: if ASpu, t, ωq ď σ2aptq then Ź always true for t “ 0

9: p̂pu, ωq Ð Nωpuq
Nωpuq`1 p̂pu, ωq `

1
Nωpuq`1Pt`ωpuq Ź Pωpuq is given in Definition 1

10: Nωpuq Ð Nωpuq ` 1
11: end if
12: end for
13: end for
14: û Ð defined by (4.2)
15: return p̂pu, ¨q, û
16: end function
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Note here that the output denoised version of the patch p̂pu, ωq verifies the following
equation

p̂pu, ωq “
ÿ

tPT

λtPt`ωpuq , λt “
1ASpu,t,ωqďaptq

ř

sPT 1ASpu,s,ωqďapsq
.

In the original NL-means method, we have

(4.3) λt “
exp

´

´
ASpu,t,ωq

h2

¯

ř

tPT exp
´

´
ASpu,t,ωq

h2

¯ .

Setting h is not trivial and depends on many parameters (patch size, search window size,
content of the original image). As in Algorithm 4.1, we denote Nωpuq “

ř

tPT 1ASpu,t,ωqďaptq.
The following proposition, similar to Proposition 1, gives a method for setting a. We say that
an offset t is a false alarm in a Gaussian white noise if the associated patch is not used in
the denoising algorithm. In Proposition 3 we choose a in order to control the number of false
alarms with high probability.

Proposition 3. Let NFAmax P r0, |T |s, T given in (4.1) and let a P RΩ be defined for any
t P Ω by

aptq “ AP´1 pt, ω, 1´NFAmax {|T |q ,

with background model being a Gaussian white noise W , i.e. f “ δ0 in Definition 4. Let T
be defined in (4.1) and NωpW q P t0, . . . , T u the random number of selected patches used to
denoise the patch PωpW q, see Algorithm 4.1. Then for any n P Nzt0u it holds that

P0 r|T | ´NωpW q ě ns ď
NFAmax

n
.

Proof. Using the Markov inequality, we have

P0 r|T | ´NωpW q ě ns ď
|T | ´

ř

tPT E
“

1ASpW,t,ωqďaptq
‰

n
ď

NFAmax

n
.

In this case the null hypothesis P0 is given by a standard Gaussian random field, which is
a special case of the Gaussian random field models introduced in Section 3. In the next propo-
sition, using the a contrario framework, we obtain probabilistic guarantees on the distance
between the reconstructed patch p̂pu, ωq and the true patch Pωpu0q.

Proposition 4. Let U “ u0 ` σW , where W is a standard Gaussian white noise over Ω,
u0 P RΩ and σ ą 0. Let x P Ω and ω “ x ` ω0 be a fixed patch and let NFAmax P r0, |T |s.
We introduce the random set T̂ “ tt P T, ASpU, t, ωq ď σ2aptqu (the selected offsets) with
aptq “ AP´1 pt, ω, 1´NFAmax {|T |q as in Proposition 3 and T defined in (4.1). Let aT “
maxtPT aptq. Then for any aW ą 0, setting εW “ 1´ P

”

}PωpW q}
2
2 ď aW | T̂

ı

, we have

(4.4) P
”

}p̂pU, ωq ´ Pωpu0q}2 ď σpa
1{2
T ` a

1{2
W q | T̂

ı

ě 1´ εW .
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Proof. We have for any t P T̂

}Pt`ωpUq ´ Pωpu0q}2 ď }Pt`ωpUq ´ PωpUq ` PωpUq ´ Pωpu0q}2

ď }Pt`ωpUq ´ PωpUq}2 ` }PωpUq ´ Pωpu0q}2

ď σa
1{2
T ` σ}PωpW q}2 .

This gives the following event inclusion for any t P T̂ ,
!

}PωpW q}2 ď a
1{2
W

)

Ă

!

}Pt`ωpUq ´ Pωpu0q}2 ď σpa
1{2
T ` a

1{2
W q

)

,

We also have that by definition of εW

P
”

}p̂pU, ωq ´ Pωpu0q}2 ď σpa
1{2
T ` a

1{2
W q | T̂

ı

ě P

»

–

č

tPT̂

t}Pt`ωpUq ´ Pωpu0q}
2
2 ď σ2pa

1{2
T ` a

1{2
W q2u | T̂

fi

fl

ě P
”

}PωpW q}
2
2 ď aW | T̂

ı

ě 1´ εW .

In our applications we use Algorithm 4.1 with aptq “ AP´1 pt, ω, 1´NFAmax {|T |q. Therefore
we need to compute aptq “ AP´1 pt, ω, 1´NFAmax {|T |q with a Gaussian white noise back-
ground model. We recall that in Section 3.2, using Proposition 2, we give a method to compute
this quantity in general Gaussian settings. In the case of a Gaussian white noise, the next
proposition shows that the eigenvalues can be computed without approximation.

Proposition 5. Let t “ ptx, tyq P Z2zt0u, Ct as in Proposition 2 with f “ δ0 and ω “

J0, p ´ 1K2, with p P N. We have, expressing Ct in the basis corresponding to the raster scan
order on the x-axis

Ct “

¨

˚

˚

˚

˚

˝

B0 B1 . . . Bp´1

BJ1 B0
. . .

...
...

. . . B0 B1

BJp´1 . . . BJ1 B0

˛

‹

‹

‹

‹

‚

` 2Id ,

#

B` “ D|ty | PMppRq if ` “ |tx|
B` “ 0 otherwise

where Dj is a zero matrix with ones on the j-th diagonal. The eigenvalues of Ct are given by
λm,k “ 4 sin2

`

kπ
2m

˘

with multiplicity rm,k where m P J2, q`1K, k P J1,m´1K and q “ r
p

|tx|_|ty |
s.

For any m P J2, q ` 1K, k P J1,m´ 1K it holds
(a) for any k1 P J1,m´ 1K, rm,k “ rm,k1 ;
(b) rm,k “ 2|tx||ty| if 2 ď m ă q ;
(c) rm,k “ rxry if m “ q ` 1 ;

(d)
řq`1
m“2

řm´1
k“1 rm,k “ p2 ,

with rx “
´

r
p
|tx|

s´ q
¯

|tx| ` |tx| ´ px, where px “ |tx|r
p
|tx|

s ´ p. We define ry in the same
manner. A similar proposition holds if ty ‰ 0.
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(a) (b)

Figure 3: Thresholds dependency in NFAmax. In (a) we display aptq “

AP´1 pt, ω, 1´NFAmax {|T |q as a function of NFAmax. The patch size is fixed to 8ˆ 8 and the
offsets t satisfy }t}8 ď 10, hence |T | “ 212 “ 441. The red dashed line is given by maxtPT aptq
and the green dashed line by mintPT aptq. The blue line represents the value obtained consid-
ering the simplifying assumption that patch domains do not overlap, see Proposition 2 and the
remark that follows. The maximal increase between the maximum of aptq and the minimum
of aptq is of 13.0%. In (b) we display the mapping t ÞÑ aptq for NFAmax “ 0.5, the central
pixel corresponds to t “ 0. Note that aptq decreases as }t} increases and is constant when,
}t}8 ě 8.

Proof. The proof is postponed to Appendix A.

This property allows us to compute exactly the eigenvalues appearing in Proposition 2. In
Figure 3 we illustrate that aptq for fixed patch size (8ˆ 8) and patch search window (21ˆ 21).
Thus in our implementation we suppose that aptq “ AP´1 pt, ω, 1´NFAmax {|T |q is constant
and set its value to the mean of aptq over t P T .

4.2. Some experimental results. In the following paragraph we present and comment
some results of our threshold NL-means algorithm, see Algorithm 4.1. We recall that we use
aptq “

ř

tPT AP´1 pt, ω, 1´NFAmax {|T |q {|T |. In Figure 4 we present a first comparison with
the NL-means algorithm. Perceptual results as well as Peak Signal to Noise Ratio (PSNR)
measurements 1 are commented. We also present the running time of the original NL-means
algorithm and ours. The experiments were conducted with the following computer specifi-
cations: 16G RAM, 4 Intel Core i7-7500U CPU (2.70GHz). Results on other images than
Barbara are displayed in Figure 5.

If the threshold aptq is high, i.e. NFAmax ! |T | then almost no patch is rejected, which
means that almost all patches are used in the denoising process. In consequence, the output
denoised image is very smooth. This smoothness is a correct guess for constant patches.
However, this proposition does not hold when the region contains details. Indeed, in this

1PNSRpu, vq “ 10 log10

´

maxΩ u
2

}u´v}22

¯

.
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(a) (b) (c) PSNR “ 29.81, δt “ 0.46s (d) PSNR “ 29.29, δt “ 0.37s

Figure 4: Visual results. In (a) we present an original image (Barbara) scaled between 0
and 255. In (b) we add Gaussian white noise with σ “ 10. We recall that the patch domain
is fixed to ω0 being a 8 ˆ 8 square. In (c) we present the denoised results with NL-means
threshold, Algorithm 4.1, where NFAmax “ 4.41, which corresponds to 1% of rejected patches
in the search window of a Gaussian white noise. In (d) we present the results obtained with
the traditional NL-means algorithm with h “ 0.13σ|ω| (optimal h for this noise level and this
image with regard to the PSNR measure). The results are the same on the texture area for
(c) and (d). The perceptual results on the zoomed region are satisfying, even though some
regions are too smooth compared to the original image (a). In (c) and (d), δt is the running
time of the algorithm. We can observe that our algorithm is slightly slower than NL-means.

case details are lost due to the averaging process. By setting a conservative threshold, e.g.
NFAmax {|T | « 0.1, for example, we reject all the patches for which the structure does not
strongly match the one of the input patch, see Figure 6. This conservative property of the
algorithm ensures that we can control the loss of information in the denoised image, see
Proposition 4. However, if no patch, other than the input patch itself, is detected as similar
we highly overfit the original noise. Many algorithms such as BM3D, see [12], solve this
problem by treating this case as an exception, applying a specific denoising method in this
situation. We show the differences between our version of NL-means and BM3D in Figure 7 .

In Figure 8, we show that Algorithm 4.1 performs better than the original NL-means
algorithm. By setting NFAmax {|T | “ 0.01 we obtain that the PSNR of the denoised image is
better than the one of NL-means for nearly every value of h.

Let us emphasize that our goal is not to provide a new state-of-the-art denoising algorithm.
Indeed we never obtain better denoising results than the BM3D algorithm. However, our
algorithm slightly improves the original NL-means algorithm. It shows that statistical testing
can be efficiently used to measure the similarity between patches and therefore provides a
robust way to perform the weighted average in this algorithm.

5. Periodicity analysis.

5.1. Existing algorithms. In the following sections we use our patch similarity detection
algorithm, see Algorithm 3.1, to analyze images exhibiting periodicity features. Let Ω Ă Z2

be a finite domain and ω Ă Ω a finite patch domain.
Periodicity detection is a long-standing problem in texture analysis [71]. First algorithms
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PSNR “ 31.67, δt “ 0.21s PSNR “ 30.81, δt “ 0.07s

PSNR “ 29.12, δt “ 0.46s PSNR “ 28.44, δt “ 0.39s

PSNR “ 29.43, δt “ 0.22s PSNR “ 29.03, δt “ 0.07s

PSNR “ 28.82, δt “ 0.22s PSNR “ 28.68, δt “ 0.09s

Figure 5: NL-means comparison. In this figure we compare Algorithm 4.1 with the
traditional NL-means algorithm. Here ω0 is fixed to be a 8 ˆ 8 square. The first column
contains clean images, the second column represents the same images corrupted by a Gaussian
noise with σ “ 20. The third column is the output of Algorithm 4.1 with NFAmax fixed to
4.41 and the last column is the output of the NL-means algorithm for the optimal value of
h (with regards to the PSNR), see (4.3). Perceptual results and PSNR are comparable, even
though our algorithm yields slightly better PSNR values. We also present the running times
δt of both algorithm. Our algorithm is slower than NL-means as it computes the threshold
before running the NL-means algorithm.
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(a) NFAmax {|T | “ 0.2 (b) NFAmax {|T | “ 0.1 (c) NFAmax {|T | “ 0.01

Figure 6: Number of detections. In this figure we present, for each denoised pixel, the
number of detected offsets used to compute the denoised patch, i.e. the cardinality of T̂ , see
Proposition 4. A white pixel means that the number of detected offsets is maximal and a
black pixel means that the number of detected offsets is 1, i.e. the patch is not denoised. As
NFAmax decreases the number of detected offsets increases. Note that |T̂ | is maximal, i.e.
equals to 212 “ 441, for constant regions. For NFAmax {|T | “ 0.1, pixels located in textured
neighborhoods use in average 20 to 40 patches to perform denoising.

used the quantization of images, relying on co-occurrence matrices and statistical tools like χ2

tests or κ tests. Global methods extract peaks in the frequency domain (Fourier spectrum) [49]
or in the spatial domain (autocorrelation). In [32] the notion of inertia is introduced. It is
defined for any t P Ω by Iptq “

ř

pi,jqPJ0,NgK2pi ´ jq2
`
ř

zPΩ 1 9upzq“i1 9upz`tq“j

˘

, where u is a
quantized image on Ng ` 1 gray levels. In [8], the authors show that the local minima of the
inertia measurement can be used to assess periodicity. Similarly, we introduce the ω-inertia for
any t P Ω by Iωptq “

ř

pi,jqPJ0,NgK2pi´ jq
2
`
ř

zPω 1 9upzq“i1 9upz`tq“j

˘

. The following proposition
extends to a local framework results from [52].

Proposition 6. Let u P RΩ. Suppose that u is quantized, i.e. there exists Ng P N such that
for any x P Ω, upxq P J0, NgK. We have Iωptq “ ASpu, t, ωq.

Proof. For any t P Ω we have

Iωptq “
ÿ

pi,jqPJ0,NgK2
pi´ jq2

ÿ

xPω

1 9upxq“i1 9upx`tq“j “
ÿ

xPω,pi,jqPJ0,NgK2
pi´ jq21 9upxq“i1 9upx`tq“j

“
ÿ

xPω

p 9upxq ´ 9upx ` tqq2 “ ASpu, t, ωq.

If ω “ Ω then the ω-inertia statistics is exactly the inertia introduced in [32] and the result
is due to [52].

5.2. Algorithm and properties. Lattice detection is closely related to periodicity analysis,
since identifying a lattice is similar to extracting periodic or pseudo-periodic structures up
to deformations and approximations. A state-of-the-art algorithm proposed in [53] uses a
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(a) original (b) BM3D (c) NFAmax {|T | “ 0.01 (d) NFAmax {|T | “ 0.1

Figure 7: Comparison with BM3D. We compare Algorithm 4.1 to BM3D [12]. The
original image (Barbara) is presented in (a). We consider a noisy version of the input image
with σ “ 20. In (b) we present the ouput of BM3D, with default parameters, see [39]. The
result in (c) corresponds to the output of Algorithm 4.1 with NFAmax {|T | “ 0.01. The output
(c) is too blurry compared to (b). In order to correct this behavior we set NFAmax {|T | “ 0.1
in (d), i.e. increase the global threshold and some improvements are noticeable. However the
image remains blurry and artifacts due to the overfitting of the noise appear, this is known as
the rare patch effect in [22]. For instance, some patches in the scarf are not denoised anymore.

(a) σ “ 10 (b) σ “ 20 (c) σ “ 40

Figure 8: PSNR study. In this figure we present the evolution of the PSNR for different
values of the parameter h of the original NL-means method, see (4.3), in blue, computed on the
Barbara image. The x-axis represents h

σ|ω| . The orange dashed line is the PSNR obtained for
the threshold NL-means algorithm (Algorithm 4.1) with NFAmax {|T | “ 0.01. Except for low
levels of noise the proposed method gives better PSNR values than the original implementation
of NL-means algorithm for every choice of h.

recursive framework which consists in 1) a lattice model proposal based on detectors such
as Kanade-Lucas-Tomasi (KLT) feature trackers [48], 2) spatial tracking using inference in
a probabilistic graphical model, 3) spatial warping correcting the lattice deformations in the
original image. In this section we propose a new algorithm for lattice detection. The lattice
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proposal step 1) is replaced by an Euclidean auto-similarity matching detection (see Section
3.2 and Algorithm 3.1) where the patch domain ω is fixed. Using these detections we build
a graph with a few nodes (usually approximately 20 nodes for a 256 ˆ 256 image). We use
the same notation for the detection mapping t ÞÑ 1ASipu,t,ωqďaptq i.e. the Dmap output of
Algorithm 3.1, which is a binary function over the offsets, and the set of detected offsets. We
recall that two pixel coordinates x and y are said to be 8-connected if x “ y ` pδx, δyq with
δx, δy P t´1, 0, 1u. The graph G “ pV,Eq is then built as follows:

§ Vertices: for each 8-connected component, Ck in Dmap we note vk one position for
which the minimum of ASpu, t, ωq over Ck is achieved. The set of vertices V is defined
as V “ pvkqkPJ1,NC K where NC is the number of 8-connected components in Dmap ;

§ Edges: each vertex is linked with its four nearest neighbors in the sense of the Eu-
clidean distance, defining four unoriented edges.

Refering to the three steps of [53] we present our model to replace step 2) (i.e. the inference
in a probabilistic graphical model) and introduce the approximated lattice hypothesis defined
on a graph.

Definition 5 (Approximated lattice hypothesis). Let G “ pV,Eq be a random graph with
V Ă R2. We say that G follows the approximated lattice hypothesis if there exists a basis B “
pb1, b2q of R2 and, for each edge e P E, a couple of integers pme, neq P Z2 such that e has the
same distribution as meb1`neb2`σZe, with pZeqePE independent standard Gaussian random
variables in R2 and σ ą 0. We denote by M the vector of all coefficients pme, neqePE P Z2|E|.

Our goal is to perform inference in the statistical model defined by the following log-posterior

(5.1) L pB,M, σ2|Eq “ ´2p|E| ` 1q logpσ2q ´
1

2σ2

˜

ÿ

ePE

}meb1 ` neb2 ´ e}2 ` rpB,Mq

¸

loooooooooooooooooooooooomoooooooooooooooooooooooon

qpB,M |Eq

,

where rpB,Mq “ δB}B}
2
2 ` δM}M}

2
2 with δB, δM ě 0. A discussion on the dependence of

the model on the hyperparameters pδB, δM q is conducted in Figure 9. Finding the MLE of
this full log-posterior is a non-convex, integer problem. However performing the minimization
alternatively on B and M is easier since at each step we only have a quadratic function to
minimize. Minimizing a positive-definite quadratic function over Z2 is equivalent to finding
the vector of minimum norm in a lattice. This last formulation is known as the Shortest Vector
Problem (SVP) which is a challenging problem [51] (though it is not known if it is a NP-hard
problem). We replace this minimization procedure over a lattice by a minimization over R2

followed by a rounding of this relaxed solution.
For any σ ą 0 we denote by Lnpσq “ L pBn,Mn, σ

2|Eq, with n P N, the log-posterior
sequence.

Proposition 7 (Alternate minimization update rule). In Algorithm 5.1, we get for any n P N

M̃ “
`

ΛBn b Id|E|
˘´1

EBn P R2|E| , Bn`1 “
`

ΛMn`1 b Id2

˘´1
EMn`1 P R4 ,

with b the tensor product between matrices and

(a) ΛB “

ˆ

}b1}
2 ` δB xb1, b2y

xb1, b2y }b2}
2 ` δB

˙

, ΛM “

ˆ

}M1}
2 ` δM xM1,M2y

xM1,M2y }M2}
2 ` δM

˙

;
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Algorithm 5.1 Lattice detection – Alternate minimization
1: function Alternate-minimization(E, δB, δM , Nit)
2: M0 Ð 0
3: B0 Ð initialization procedure Ź initialization discussed in the end of Section 5.2
4: for nÐ 0 to Nit ´ 1 do
5: M̃ Ð argmin

MPR2|E|

qpBn,M |Eq Ź expression given in Proposition 7

6: if q
´

E|Bn, rM̃ s
¯

ă q pE|Bn,Mnq then Ź r¨s is the nearest integer operator

7: Mn`1 Ð rM̃ s
8: else
9: Mn`1 Ð Mn

10: end if
11: Bn`1 Ð argmin

BPR4

qpB,Mn`1|Eq Ź expression given in Proposition 7

12: end for
13: σ2

Nit
Ð argmin

σ2PR`

´L pBNit ,MNit , σ
2|Eq

14: return BNit ,MNit , σ
2
Nit

15: end function

(b) EB “
ˆ

pxe, b1yqePE
pxe, b2yqePE

˙

, EM “

¨

˚

˝

ř

ePE

mee

ř

ePE

nee

˛

‹

‚

.

Proof. The proof is postponed to Appendix B.

Note that if B is orthogonal, i.e. xb1, b2y “ 0 then ΛB is diagonal and the proposed method
is the exact solution to the minimization problem over Z2.

Theorem 1 (Convergence in finite time). For any σ ą 0, pLnpσqqnPN is a non-decreasing
sequence. In addition, pBnqnPN and pMnqnPN converge in a finite number of iterations.

Proof. pLnpσqqnPN is non-decreasing since for any n P N, Lnpσq ď L pBn,Mn`1, σ
2|Eq ď

Ln`1pσq. Let us show that the sequences pMnqnPN and pBnqnPN are bounded. Because
pLnpσqqnPN is non-decreasing, the sequence pqpBn,Mn|EqqnPN is non-increasing. We obtain
that

δM}Mn}
2 ď qpB0,M0|Eq , δB}Bn}

2 ď qpB0,M0|Eq .

The sequence pMnqnPN is bounded thus we can extract a converging subsequence. Since
pMnqnPN takes value in Z2|E|, this subsequence is stationary with value M . Let n0 P N
be the first time we hit value M . Let n P N, with n ě n0` 1, there exists n1 P N, with n1 ě n
such that Mn1 “Mn0 thus

Ln0pσq ď Ln0`1pσq ď Lnpσq ď L pBn1´1,Mn1 , σ
2|Eq ď L pBn1´1,Mn0 , σ

2|Eq ď Ln0pσq .

Hence for every n ě n0 ` 1, Lnpσq “ L pBn,Mn, σ
2|Eq “ L̃ pσq. Suppose there exists

n ě n0 ` 1 such that Mn ‰ Mn`1 this means that L pBn,Mn`1, σ
2|Eq ą Lnpσq (because
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(a) δM “ 0 δB “ 0 (b) δM “ 5 δB “ 10´1 (c) δM “ 9 δB “ 10´1

Figure 9: Influence of hyperparameters. In this experiment we assess the importance of
the hyperparameters. We consider Algorithm 5.1 with input graph a detection map, output of
Algorithm 3.1. The initialization in the three cases is the canonical basis pp0, 1q, p1, 0qq. In (a),
since the initial basis vectors are a local minimum to the optimization problem, the algorithm
converges after one iteration. However, this is not perceptually satisfying. Setting δM “ 5 and
δB “ 10´1 in (b) the true observed lattice is a sub-lattice of the output lattice of Algorithm 5.1.
Increasing δM up to 9, in (c) we obtain a perceptually correct lattice. For δM larger than 10, the
basis vectors go to 0. Only the regularizing term is minimized by the optimization procedure
and the data-attachment term is not taken into account. Experimentally we found that the
choice of δM is more flexible and that δM P p1, 20q gives satisfying perceptual results if the
initialization heuristics proposed in Section 5.2 is chosen.

of lines 6 and 7 of Algorithm 5.1) which is absurd. Thus pMnqnPN is stationary and so is
pBnqnPN.

In Algorithm 5.1 M0 is initialized with zero and B0 is defined as an orthonormal (up to a
dilatation factor) direct basis where the first vector is given by an edge with median norm in
E.

5.3. Experimental results. Combining the results of Section 5.2 and Section 3.2 we ob-
tain an algorithm to extract lattices in images, see Figure 10. In what follows we perform
lattice detection using Algorithm 3.1 in order to extract auto-similarity given a patch in an
original image u, which implies that the patch domain ω is set by the user. Recall that in
Algorithm 3.1, the eigenvalues of the covariance matrix in Proposition 2 are approximated, and
that the cumulative distribution function of the quadratic form in Gaussian random variables
is computed via the Wood F method [66]. Lattice detection is performed using Algorithm 5.1
with parameters δM “ 10 and δB “ 10´2.

5.3.1. Escher paving. In this section we study art images, Escher pavings, with strongly
periodic structure. We investigate the following parameters of our lattice detection algorithm:

(a) background microtexture model P0,
(b) NFAmax parameter in Algorithm 3.1,
(c) patch domain ω.



20 V. DE BORTOLI, A. DESOLNEUX, B. GALERNE, A. LECLAIRE

Patch
similarity
detection

Lattice
detection

Figure 10: Lattice proposal algorithm. Lattice detection and extraction in images require
a patch from the user and compute a binary image containing all the offsets with correct sim-
ilarity as well as a lattice matching the underlying graph. The patch auto-similarity detection
step was presented in Section 3.2. The lattice detection step was presented in Section 5.2. The
first image is the input, the second one is the output of the detection algorithm. In the last
step we show the original image with red squares placed on the computed lattice. Behind this
image, the unoriented edges of the graph are shown in red.

Microtexture model. We confirm that the choice of the microtexture model will influence
the detected geometrical structures. The more structured is the background noise model the
less we obtain detections. This situation is considered in Figure 11.

NFAmax parameter. Using a more adapted microtexture model as background model we
gain robustness compared to other less structured models such as a Gaussian white noise.
However, NFAmax must be set carefully otherwise two situations can occur:

(a) if NFAmax is too high, too many detections can be obtained (true perceptual detections
are not differentiated from false positives) ;

(b) if NFAmax is too low, we fail to identify important perceptual structures in the image.
We observe that a general good practice is to set NFAmax equal to 10, see Figure 12. However,
if the input patch is corrupted one may increase this parameter up to 102 or 103, see Figure
17 and Figure 18.

Patch position. Patch position and size are crucial in our detection model, since we rely
on local properties of the image. As shown in Figure 13 these parameters should be care-
fully selected by the user. However, for particular applications such as lattice extraction for
crystallographic purposes, there exist procedures to extract primitive cells [50].

5.3.2. Crystallography images. Defect localization, noise reduction, correction of crys-
talline structures in images are central tasks in crystallography. Usually, they require the
knowledge of the geometry of a perfect underlying crystal. In our experiments we manually
identify the geometry of the periodic crystal, which allows for multiple structures in one image,
provided a user input of the primitive cell in a lattice. This primitive cell extraction could
be automated [50]. In Figure 14, we present an example of multiple geometry extraction.
Statistics like angle and period can be retrieved using the estimated basis vectors. This image
contains two lattices and the locality of our measurements allows for the detection of both
structures. Using windowed Fourier transform could be efficient to obtain local measurements
on the periodicity of these images since the information is highly frequential. However in or-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: Choice of the microtexture model. In this experiment we discuss the choice
of the a contrario background microtexture model. In the left column we display the graph
obtained after the detection step. In the middle column we superpose the proposed lattice on
the original image. The original patch is drawn in green, obtained basis lattice vectors are in
cyan, and red squares are placed onto the proposed lattice. In (a) and (b) the microtexture
model is given by (3.1) and NFAmax is set to 10. A sample of this model is presented in (c).
Obtained results match the perceptual lattice. In (d), (e), (g) and (h) the microtexture model
is a Gaussian white noise model with variance equal to the empirical variance of the original
image. Sample from this Gaussian white noise is presented in (f). In (d) and (e), NFAmax
is set to 10. This leads to an excessive number of detections in the input image. In order to
obtain the perceptual lattice found in (b) with a Gaussian white noise model we must set the
NFAmax parameter to 10´111. Results are presented in experiments (g), (h) and (i). Image
(h) is also an example for which the median initialization for B0 in Algorithm 5.1 identifies a
non satisfying local minimum. This situation is corrected in (i) with random initialization for
B0. In (h) final log-posterior value is ´565.5 which is inferior to the final log-posterior value
in (i): ´542.1. Thus (i) gives a better local maximum of the full log-posterior than (h).
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(a) (b) (c)

Figure 12: Choice of Number of False Alarms. In this experiment we discuss the choice
of the NFAmax parameter in the a contrario framework in the case where the underlying
microtexture model is given by (3.1). Each column corresponds to a pair of images: the
returned lattice and its associated underlying graph. In (a), NFAmax is set to 1. Detections
are correct, there are not enough points to precisely retrieve the perceptual lattice. In (b),
NFAmax is set to 10. The estimated lattice is correct. In (c), NFAmax is set to 103. In this case
we obtain false detections which lead to an incorrect final lattice. Note that large detection
zones in the binary image (c) are due to the non-validity of the Wood F approximation for
some offsets. This behavior is also present in (a) and (b) but less noticeable.

der to obtain the same detection map as Algorithm 3.1 one must carefully set the threshold
parameter, NFAmax. This situation is illustrated in Figure 15.

Finally we assess the precision of our measurements by comparing our results with a model
used in crystallography, see Figure 16. We indeed retrieve one of the possible bases used to
describe these lattices. However, the symmetry constraints are not present in the identified
basis. To obtain another basis, one must relax the regularization parameters. A more natural
way to obtain the desired primitive cell would be to introduce symmetry constraints in the
graphical model formulation in (5.1).

5.3.3. Natural images. Identifying lattices in natural images is a more challenging task
since we have to deal with image artifacts. In this section we investigate the effect on the
detection of the background clutter in natural images, see Figure 17, and the effect of the
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(a) (b) (c)

(d) (e) (f)

(g) 10ˆ 10 (h) 15ˆ 15 (i) 20ˆ 20

Figure 13: Influence of patch size and patch position. For each experiment NFAmax is
set to 104, i.e. 4 % of the pixels. In most cases lower NFAmax could be used but setting a high
NFAmax ensures that we always get detections even if the patch only contains microtexture
information. Each row corresponds to a lattice proposal with same patch position but different
patch sizes: 10ˆ 10 for the left column, 15ˆ 15 for the middle one and 20ˆ 20 for the right
one. Each image represents the superposed proposed lattice on the original image. On the
bottom-right of each image we display the underlying graph as well as the binary detection.
On the first row the patch contains only a white region with a few gray pixels. The influence
of these pixels is visible for small patch sizes (a) but is no longer taken into account for larger
patch sizes, (b) and (c). On the second row the patch contains gray microtexture which has
some local structure. We identify large similarity regions and no perceptual lattice is retrieved
in (d), (e) and (f). The situation is different on the third row. The 10ˆ10 patch contains only
uniform black information in (g), but the situation changes as the patch sizes grows. In (h),
the patch intersects black, gray and white zones. The graph is much sparser and the lattice is
close to the perceptual one. In (i), the patch size is large enough to cover large areas of the
three gray levels and the perceptual lattice is identified.
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(a) (b) (c) (d)

Figure 14: Lattice extraction. In this experiment we consider a crystallographic image (an
orthorombic NiZr alloy) and set NFAmax to 102. Two lattices are present in this image and
they are correctly identified in (b) and (d). Note that in (a), respectively in (c), mostly points
in the left, respectively right, part of the image are identified, thus yielding correct lattice
identification. Points which should be identified and are discarded nonetheless correspond to
regions in which we observe contrast variation. Image courtesy of Denis Gratias.

(a) (b) 90% (c) 95% (d) 99%

Figure 15: Comparison with Fourier based methods. Since the original image can be
segmented in two highly periodic components, Fourier methods might be well-adapted to the
lattice extraction task. In (a) we present a sub-image of the original alloy. We compute the
autocorrelation of this sub-image and threshold it. This operation gives us a detection map,
like Algorithm 3.1. In (b) the threshold is set to 90% percent of the maximum value of the
autocorrelation. Too many points are identified. In (d) the threshold is set to 99% and only
one point is identified. Correct lattice is identified in (c).

camera position, see Figure 18.
Preprocessing. Due to the occlusions occurring in natural images, if a lattice is superposed

over a real photograph, carefully selecting structural elements might not be enough in order to
retrieve the periodicity. Indeed, if we observe a repetition of the lattice pattern, the background
does not necessarily contain any repetition and thus makes the detection more complicated. In
order to avoid such a problem we propose to introduce a preprocessing step in our algorithm.
This preprocessing step will be encoded in a linear filter h. Suppose U is a sample from a
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(a)

Axe [001]

(b)

Figure 16: Agreement with crystallography models. In (a) we perform a zoom on of the
lattice identified in Figure 14 and compare it to the one identified by crystallographists in (b).
(a) is a zoomed rotated version of a crystalline structure similar to (b). The output lattice in
(a) is the same as the one in (b). Indeed in (b) the red points, for instance, form a lattice.
A possible basis for this lattice is given by the vectors of a parallelogramm. Up to rotation
these basis vectors match the one identified in (a). However, the parallelogramm basis is a
symmetric and thus is not chosen by chemists since it does not reflect the geometry of the
alloy. The preferred basis is given by the symmetric rhombus (white edges in (b)). Image
courtesy of Denis Gratias.

Gaussian model with function f then h˚U is a sample from a Gaussian model with function h˚
f . Thus all the properties derived earlier remain valid with this linear operation. In Figure 17,
we set h to be a Laplacian operator 2. This operation allows us to avoid contrast problems.

Homography. In the previous experiments we suppose that the lattice structure was in
front of the camera. In many cases this assumption is not true and there exists an homography
that matches the deformed lattice in the image to a true lattice. Our algorithm makes the
assumption that the lattice is viewed in a frontal way and fails otherwise. However, locally,
this assumption is true and we can observe partial match of the lattices in Figure 18.

5.4. Texture ranking. We conclude these experiments by showing that this simple graph-
ical model can be used to perform ranking among texture images, sorting them according
to their degree of periodicity. We say that an image has high periodicity degree if a lattice
structure can be well fitted to the image. We introduce a criterion for evaluating the relevance
of the lattice hypothesis. Let u be an image over Ω, let ω Ă Ω be a patch domain and a be as

2We use a discrete Laplacian operator ∆ such that for any x “ px1, x2q, we get that ∆puqpx1, x2q “
pupx1 ` 1, x2q ` upx1 ´ 1, x2q ` upx1, x2 ` 1q ` upx1, x2 ´ 1q ´ 4upxqq {4, where boundaries are handled peri-
odically.
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(a) (b) (c) (d)

Figure 17: Preprocessing and filtering. In (a) and (c) we display the graphs obtained
with Algorithm 3.1 applied on images (b) and (d). In (b) and (d) the original image is
superposed with the estimated lattice (vectors in cyan and proposed patches in red). In (a)
and (b), NFAmax was set to 105 which corresponds to 35 % of detection in the associated
a contrario model. Lower NFAmax did not give enough points to conduct the lattice proposal
step. We obtain a visually satisfying lattice. In (c) and (d) we apply a simple preprocessing,
a Laplacian filter, to the image and set NFAmax to 10. The detection figure is much cleaner
and the estimation makes much more sense from a perceptual point of view. Note that, as
in (b), the proposed lattice does not exactly match the fence periodicity. This is due to: 1)
the initialization of the algorithm and the structure of the graph in the alternate minimization
algorithm 2) the fact that the horizontal periodicity is broken by the black post.

(a) (b)

Figure 18: Homography and locality. In this experiment NFAmax was set to 103. Note
that the detected graph is localized around the original patch in (a). In (b) we superpose the
proposed lattice onto the original image. The lattice proposal is valid in a small neighborhood
around the original patch. However it is not valid for the whole image.
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in Proposition 1 with NFAmax set by the user.

Definition 6 (Periodicity criterion). Let tt P Ω, ASpu, t, ωq ď aptqu be the set of detected
offsets and NC its number of connected components as defined in Section 5.2. Let also p pB,xM, pσq
be the estimated parameters using Algorithm 5.1. We define the following periodicity criterion
cper as

(5.2) cperpuq “
πpσ2

NC | detpb̂1, b̂2q|
,

where pB “ pb̂1, b̂2q.

The criterion cper simply computes the ratio between the error area of Algorithm 5.1, i.e.
the error made when considering the approximated lattice hypothesis, see Definition 5, and the
area of the parallelogram defined by the output basis vectors. If we have enough detections
this quantity is supposed to be small when the approximated lattice hypothesis holds and
large when it does not. Nonetheless, we introduce a dependency in the number of detections.
Indeed, even if no lattice is perceived, the hypothesis in Definition 5 may still hold if the
number of detected offsets is small.

In the experiment presented in Figure 19 we sort 25 texture images based on the cper
criterion. Images are of size 256ˆ 256. Since the identified graph highly depends on the patch
position and the patch size, for each image we uniformly sample 150 patch positions and set
the patch size to 20ˆ 20. For each set of parameters we find a lattice using Algorithm 3.1 and
Algorithm 5.1 with parameters NFAmax “ 1, δM “ 10, δB “ 10´2 and Nit “ 10. A statistical
study of our ranking is presented in Figure 20. Note that, from a perceptual point of view,
from (a) to (n) all textures are periodic except for (f), (j) and (k) which are examples for which
our algorithm fails. However, from (o) to (y), no texture is periodic.

6. Conclusion. In this paper we introduce a statistical model, the a contrario framework,
to analyze spatial redundancy in images. We propose a general algorithm for detecting re-
dundancy in natural images. It relies on Gaussian random fields as background models and
takes advantage of the links between the `2 norm and Gaussian densities. The a contrario
formulation provides us with a statistically sound way of thresholding distances in order to
assess similarity between patches. In this rationale we replace the task of manually setting
thresholds by the selection of a Number of False Alarms.

We illustrate our contribution with three examples in various domains of image process-
ing. Introducing a simple modification of the NL-means algorithm we show that similarity
detection (in this case, dissimilarity detection) in a theoretical a contrario framework can eas-
ily be embedded in any image denoising pipeline. For instance, the threshold we introduced
could be integrated into the Non-Local Bayes algorithm [40] in order to estimate mean and
covariance matrices with probabilistic guarantees. The generality of our model allows for sev-
eral extensions for non-Gaussian noises [16] or to take into account the geometry of the patch
space [34, 63].

Turning to periodicity detection we propose a novel graphical model using the output
of Algorithm 3.1 in order to extract lattices from images. In this model, lattice extraction
is formulated as the maximization of some log-likelihood defined on a graph. We prove the
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(a) -9.75 (b) -9.42 (c) -9.12 (d) -9.00 (e) -8.80

(f) -8.24 (g) -8.24 (h) -7.99 (i) -7.80 (j) -7.77

(k) -7.74 (l) -7.72 (m) -7.47 (n) -7.26 (o) -7.21

(p) -7.20 (q) -7.19 (r) -7.17 (s) -6.92 (t) -6.86

(u) -6.78 (v) -6.65 (w) -6.56 (x) -6.30 (y) -6.16

Figure 19: Texture ranking. The cper criterion, defined in (5.2), is computed for each
setting. We associate to each image the median of the 150 criterion values and sort the images
accordingly. (a) corresponds to the lowest criterion, i.e. the most periodic image according to
cper criterion. (y) corresponds to the largest criterion, i.e. the least periodic image according
to cper. Under each image we give the logarithm of the median cper values.
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Figure 20: Boxplot for cper values. In this figure we present a boxplot of the cper values,
defined in (5.2), used to rank textures images in Figure 19. We recall that we use 150 random
patch positions in order to compute the cper values. Letters on the x-axis correspond to
the textures in Figure 19. For each texture we present its median cper value. The lower,
respectively upper, limit of the blue box corresponds to 25%, respectively 75% of the computed
cper values. The dashed line corresponds to the confidence interval with level 0.07 under
normality assumption. Points outside this interval are plotted in red and the graphics was
clipped between 0 and 5ˆ10´3. The size of the confidence interval grows with the median value.
It must be noted that the overlapping of the blue boxes might explain some inconsistencies
of our ranking. Another source of errors lie in the model which assumes that if a texture is
periodic its pattern is described by a 20ˆ20 patch. In order to perform a more robust ranking
a multiscale approach should be preferred.

finite-time convergence of Algorithm 5.1. We provide image experiments illustrating the role of
the hyperparameters in our study and we assess the importance of selecting adaptive Gaussian
random fields as background models. We remark that the expected number of false alarms
parameter is linked to the choice of the input patch and give a range of possible values for
NFAmax settings. We also illustrate its possible application in crystallography as it correctly
identifies underlying lattices in alloys. This rationale could be used to identify symmetry
groups (wallpaper groups) in alloys, following the work of [45]. Finally our method is tested
on natural images where some of its limits such as perspective defect or sensitivity to occlusion
phenoma are identified. It must be noted that our method could easily be extended to color
images by considering R3-valued instead of real-valued images.

Our last application consists in giving a quantitative criterion for periodicity texture rank-
ing. This criterion is based on the parameters estimated in Algorithm 5.1. Since we set our
background models to be Gaussian random fields and remarking that these are good micro-
texture approximations we wish to explore the possibility to embed our a contrario framework
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in texture analysis and texture synthesis algorithms. For instance an a contrario methodology
could be incorporated in the algorithm proposed by Raad et al. in [56]. Another potential
direction is to look at the behavior of the introduced dissimilarity functions for more general
random fields in order to handle more complex and structured situations such as parametric
texture synthesis.

7. Acknowledgements. The authors would like to thank Denis Gratias for the crystallog-
raphy images, Jérémy Anger for some of natural images, Axel Davy who provided an OpenCL
implementation of the NL-means algorithm and Thibaud Ehret for its insights and comments
on denoising algorithms.

Appendix A. Eigenvalues.

Proof of Proposition 5. We fix t ‰ 0 with }t}8 ă p and denote C “ Ct. Without loss
of generality we consider that tx ą 0 and ty ą 0. We consider X an eigenvector of C. Let
Ω0 “ pΩ´ tq X Ωc and the function J : Ω0 Ñ J2,`8J such that for any x0 P Ω0

Jpx0q “ argmin tk P Nzt0u, x0 ` kt R Ωu .

It is clear that I “ tpk,mq, k P J1,m ´ 1K, m P JpΩ0qu is in bijection with Ω. Let x0 P Ω0,
m “ Jpx0q and k P J1,m´ 1K. We define Xx0,k over Z2 such that

Xx0,kpx0 ` `tq “ sin

ˆ

`kπ

m

˙

for ` P J1,m´ 1K , 0 otherwise .

Using that sinpa` bq ` sinpa´ bq “ 2 sinpaq cospbq, we have for any x P Z2

Xx0,kpx` tq ´ 2 cos

ˆ

kπ

m

˙

Xx0,kpxq `Xx0,kpx´ tq “ 0 .

This implies that for any x P Z2

2Xx0,kpxq´Xx0,kpx`tq´Xx0,kpx´tq “

„

2´ 2 cos

ˆ

kπ

m

˙

Xx0,kpxq “ 4 sin2

ˆ

kπ

m

˙

Xx0,kpxq .

Thus the one-dimensional vector (given by the raster-scan order on the x-axis) of the restriction
of Xx0,k is an eigenvector of C associated with eigenvalue 4 sin2

`

kπ
m

˘

.
Using that I is in bijection with Ω we get that the number of vectors pXx0,kq is |Ω|. We

show that this family of vectors is linearly-independent. Let Λx0,k P R such that

ÿ

x0PΩ0

Jpx0q´1
ÿ

k“1

Λx0,kXx0,k “ 0 .

Since Xx0,k and Xy0,k
1 have different support if and only if x0 ‰ y0 we get that for any

x0 P Ω0,
řJpx0q´1
k“1 Λx0,kXx0,k “ 0. This gives that pΛx0,kqkPJ1,Jpx0q´1K is in the kernel of the

matrix psinp`kπ{pJpx0q ´ 1qqq1ďj,`ďJpx0q´1. Since the sinus discrete transform is invertible we
obtain that for any x0 P Ω0 and k P J1, Jpx0q´ 1K, Λx0,k “ 0. Thus the family Xx0,k is a basis
of eigenvectors.
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We aim at computing the cardinality of Kk,m “ tXx0,k, Jpx0q “ mu. By definition,
in Proposition 5, rk,m “ |Kk,m|. First note that |Kk1,m| “ |Kk,m|. We give the following
decomposition Ω0 “ Ωx Y Ωy Y Ωx,y with

Ωx “ J´tx,´1KˆJ0, p´1´tyK, Ωx “ J0, p´1´txKˆJ´ty,´1K, Ωx,y “ J´tx,´1KˆJ´ty,´1K .

Note that for all x0 P Ω0 we have that x0 ` pq ` 1qt R Ω, with q “ r
p

|tx|_|ty |
s. Thus JpΩ0q Ă

J2, q`1K. Let m P J2, q´1K. The cardinality of Kk,m is the cardinality of J´1pmq. Let x0 P Ωx

we have

x0 “ pi0, j0q P Kk,m ô

$

’

&

’

%

i0 `mtx ě p

or
j0 `mty ě p

and

$

’

&

’

%

i0 ` pm´ 1qtx ď p´ 1

and
j0 ` pm´ 1qty ď p´ 1

.

Since x0 P Ωx we have i0 `mtx ď p´ 1, hence

x0 “ pi0, j0q P Kk,m ô j0 `mty ě p and j0 ` pm´ 1qty ď p´ 1 .

Thus |ΩxXJ
´1pmq| “ txty. Similarly we get that |ΩyXJ

´1pmq| “ txty and Ωx,yXJ
´1pmq “ H.

Thus, |Kk,m| “ 2txty.
We have computed |Kk,m| for every m P J2, q ´ 1K. In order to complete our study it

only remains to compute |Kk,q`1|, since |Kk,q| can be deduced from the summability condition
and from |Kk,m| “ |Kk1,m|. We only compute |Kk,q`1|. We remark that Ωx X J´1pq ` 1q “
ΩyXJ

´1pq`1q “ H. Let x0 P Ωx,y then x0 “ ´t`px, yq with x P J0, tx´1K and y P J0, ty´1K.
We obtain the following equivalence

x0 P J
´1pq ` 1q ô

$

’

&

’

%

´ tx ` x` pq ` 1qtx ě p

or
´ ty ` y ` pq ` 1qty ě p

and

$

’

&

’

%

´ tx ` x` qtx ď p´ 1

and
´ ty ` y ` qty ď p´ 1

.

Since qtx ě p or qty ě p we obtain that the first condition is always satisfied. Thus we get

x0 P J
´1pq ` 1q ô x ď p´ 1´ pq ´ 1qtx and y ď p´ 1´ pq ´ 1qty .

Using that p´ 1´ pq ´ 1qtx “
´

r
p
tx

s´ q
¯

tx ` tx ´ 1´ px, we conclude the proof.

Appendix B. Update rules. We derive the proof of Proposition 7.

Proof. Computing the minimum of qpB,M |Eq for fixed B P R4, respectively fixed M P
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R2|E|, gives the update rule for M , respectively for B. We obtain that

qpB,M |Eq “
ÿ

ePE

m2
e}b1}

2 `
ÿ

ePEb

n2
e}b2}

2 ` 2
ÿ

ePE

menexb1, b2y

´ 2
ÿ

ePE

mexb1, ey ´ 2
ÿ

ePE

nexb2, ey ` rpB,Mq

“ BT pΛM b Id2qB ´ 2xB,EMy ` αpMq

“ } pΛM b Id2q
1
2 B ´ pΛM b Id2q

´1
2 EM}

2 ` αpMq

“ } pΛM b Id2q
1
2

´

B ´ pΛM b Id2q
´1EM

¯

}2 ` αpMq ,

where αpMq depends only on M . Similar derivation goes for B and we obtain the proposed
update rules.
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