
QUANTITATIVE PROPAGATION OF CHAOS FOR SGD IN WIDE NEURAL NETWORKS

Valentin De Bortoli?, Alain Durmus†, Xavier Fontaine†, Umut Simsekli� ◦,
?University of Oxford, †Université Paris-Saclay, �LTCI, Télécom Paris, ◦INRIA Paris

QUANTITATIVE PROPAGATION OF CHAOS FOR SGD IN WIDE NEURAL NETWORKS

Valentin De Bortoli?, Alain Durmus†, Xavier Fontaine†, Umut Simsekli� ◦,
?University of Oxford, †Université Paris-Saclay, �LTCI, Télécom Paris, ◦INRIA Paris

Motivation & Contribution

• Overparameterized neural networks (i.e. with a very large number of neu-
rons N ) are highly efficient in practice. This seems in contradiction with clas-
sical statistical learning theory (overfitting phenomenon).

• Our contribution: theoretical analysis of overparameterized neural networks.
We identify a propagation of chaos phenomenon [4, 3] and investigate the
limiting dynamics of the Stochastic Gradient Descent (SGD) whenN → +∞.

• We identify two regimes (McKean-Vlasov processes) depending on the
scaling of the stepsize in SGD with the number of neurons.

• In the second regime, large stepsizes act as an implicit regularizer.

• We draw connections with the Wasserstein gradient flow approach [1, 2].

Mean-field formulation

We aim at minimizing the structural risk

RN (w1:N ) =
∫
X×Y `

(
1
N

∑N
k=1F (wk,N , x), y

)
dπ(x, y) + 1

N

∑N
k=1 V (wk,N ) ,

where

• w1:N = {wk,N}Nk=1 are the weights of
the neural network,

• F is a feature function, e.g. F (w, x) =
sigmoid(〈w, x〉),

• ` is a loss function,

• V is a regularizer (optional),

• π is the distribution of the pair data/label.

The SGD recursion:

W 1:N
n+1 = W 1:N

n − γNβ∇R̂N (W 1:N
n , Xn, Yn) ,

with R̂N the empirical risk

R̂N (w1:N , x, y) = `
(

1
N

∑N
k=1F (wk,N , x), y

)
+ 1
N

∑N
k=1 V (wk,N ) .

Let

h(w, µ) = −
∫
X×Y ∂1` (µ[F (·, x)], y)∇wF (w, x) dπ(x, y)−∇V (w) ,

ξ(w, µ, x, y) = −h(w, µ)− ∂1`(µ[F (·, x)], y)∇wF (w, x)−∇V (w) .

Then the SGD recursion can be written in a mean-field formulation

W
k,N
n+1 = W

k,N
n + γNβ−1

{
h(W

k,N
n , νNn ) + ξ(W

k,N
n , νNn , Xn, Yn)

}
,

where νNn is the empirical measure νNn = (1/N)
∑N
k=1 δW k,N

n
.

We study the continuous-time counterpart of SGD given by the following
Stochastic Differential Equation (provably close to the original process for small
values of γNβ−1)

dW
k,N
t = h(W

k,N
t ,νNt )dt + (γNβ−1)1/2Σ1/2(W

k,N
t ,νNt )dBk

t , (1)

where Σ(w, µ) =
∫
X×Y ξ(w, µ, x, y)ξ(w, µ, x, y)>dπ(x, y) and νNt is the empirical

measure νNt = (1/N)
∑N
k=1 δWk,N

t
.

Propagation of chaos

We identify two regimes depending on the value of β ∈ [0, 1].
� Deterministic regime: β ∈ [0, 1).
Define the following McKean-Vlasov SDE

dW?
t = h(W?

t ,λ
?
t )dt , with λ?t the distribution of W?

t . (2)

Theorem 1. Let (Wk
0)k∈N be a sequence of i.i.d. Rp-valued random variables with distribu-

tion µ0 ∈ P2(Rp) and set for any N ∈ N?, W1:N
0 = {Wk

0}
N
k=1. Then, for any m ∈ N? and

T ≥ 0, there exists Cm,T ≥ 0 such that for any β ∈ [0, 1) and N ∈ N? with N ≥ m

E
[
supt∈[0,T ] ‖W

1:m,N
t −W

1:m,?
t ‖2

]
≤ Cm,TN

−(1−β) ,

with (W
1:m,N
t ,W

1:m,?
t ) = {(Wk,N

t ,W
k,?
t )}mk=1, (W1:N

t ) solution of (1) starting from W1:N
0 ,

and for any k ∈ N?, Wk,?
t solution of (2) starting from Wk

0 .

• (X
k,?
t )k∈N are i.i.d. (propagation of chaos result),

• the limiting McKean-Vlasov SDE is deterministic (no Brownian motion),

• same limiting dynamic for any β ∈ [0, 1) (first row, empirical measure β = .5, second
row, empirical measure β = .75)

� Stochastic regime: β = 1.

dW?
t = h(W?

t ,λ
?
t )dt + (γΣ(W?

t ,λ
?
t ))

1/2dBt . (3)

Theorem 2. For any m ∈ N? and T ≥ 0, there exists Cm,T ≥ 0 such that for any N ∈ N?
with N ≥ m

E
[
supt∈[0,T ] ‖W

1:m,N
t −W

1:m,?
t ‖2

]
≤ Cm,TN

−1 ,

with (W
1:m,N
t ,W

1:m,?
t ) = {(Wk,N

t ,W
k,?
t )}mk=1, (W1:N

t ) solution of (1) starting from W1:N
0 ,

and for any k ∈ N?, Wk,?
t solution of (3) starting from Wk

0 and Brownian motion (Bk
t )t≥0.

Deterministic VS Stochastic

For β ∈ [0, 1), SGD converges towards a deterministic dynamics (same as GD).
For β = 1 the limiting dynamics remains stochastic.

Each bar corresponds to the position of W 1,N
T for large N ∈ N and T ≥ 0 and

different random seeds but same initialization.

Connection with Wasserstein gradient flows

Links with Wasserstein gradient flow approaches [1].
� Deterministic regime: (λ?t )t≥0 satisfies the Partial Differential Equation (PDE)

∂tλ
?
t (w) = −div(h(·,λ?t )λ?t )(w) ,

This is the gradient flow associated with

R?(ρ) =
∫
X×Y `

(∫
Rp F (w̃, x)dρ(w̃), y

)
dπ(x, y) ,

� Stochastic regime: (λ?t )t≥0 satisfies the PDE

∂tλ
?
t (w) = −div(h(·,λ?t )λ?t )(w) + (γ/2)

∑
i,j ∂i,j(Σi,j(·,λ?t )λ?t )(w) .

If Σ = θ Id, this is the gradient flow associated with R? + (γθ/2)Ent, where

Ent(ρ) = −
∫
Rp ρ(x) log(ρ(x))dx .

Hence large stepsizes correspond to an implicit regularization of the risk R?.
Better generalization properties (MNIST classification task)

Values N = 5000 N = 5000 N = 10000 N = 10000 N = 50000 N = 50000
of N and β β = 0.75 β = 1.0 β = 0.75 β = 1.0 β = 0.75 β = 1.0
Train acc. 100% 97.2% 100% 97.2% 100% 99%
Test acc. 55.5% 56.5% 56.0% 56.5% 56.7% 57.7%
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