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« Overparameterized neural networks (i.e. with a very large number of neu-
rons V) are highly efficient in practice. This seems in contradiction with clas-

sical statistical learning theory (overfitting phenomenon).

« Our contribution: theoretical analysis of overparameterized neural networks.

We identify a propagation of chaos phenomenon [4, 3] and investigate the

limiting dynamics of the Stochastic Gradient Descent (SGD) when N — +o0.

* We identify two regimes (McKean-Vlasov processes) depending on the

scaling of the stepsize in SGD with the number of neurons.

* In the second regime, large stepsizes act as an implicit regularizer.

« We draw connections with the Wasserstein gradient flow approach [1, 2].

Mean-field formulation

We aim at minimizing the structural risk

%N(wlzN) = fXng (% Z]kvzl F(wk’N, T), y) dm(x,y) + % Z]kvzl V(wk’N) ,

where
. wl:N
the neural network,

« F'is a feature function, e.g. F'(w,z) =

sigmoid({w, x)),

e /is a loss function,

* V' is a regularizer (optional),

* 7 Is the distribution of the pair data/label.

The SGD recursion:

= {whN}Y  are the weights of

WEN = wiN A NS N (WIN X, )

with 2 the empirical risk

7 ; N N
%N(wl N,aﬁ,y) =/ (% DA F(wk>N,x),y) + %Zkzl V(wk’N) .

Let

h(wa :u) - fXXY 01t (M[F(a l’)], y) VwF(w, aj) d?‘(‘(l‘, y) — vv(w> )
§lw, px,y) = =h(w, p) = Ol(plF (-, x)|, y)VF(w,2) = VV(w) .

Then the SGD recursion can be written in a mean-field formulation

k,N
Wn+1 o

kN — kN kN
_Wn7 _I_/}/Nﬁ 1{h(Wn7 7V7]7,V)+€<Wn’ 7VéV7Xn7Yn>}7

where /¥

V'is the empirical measure v = (1/N) Z]kvzl 6Wk’N'

We study the continuous-time counterpart of SGD gi7\1/en by the following
Stochastic Differential Equation (provably close to the original process for small

values of yN/—1)

AW = pwiA

vVt + (NIHYY S 2w LN aBYE

(1)

where Y(w, pu) = fxxyﬁ(w,u,x,y)f(w,u,x,y)Tdﬂ(az,y) and I/iN is the empirical
measure ¥ = (1/N) 321, O kN
t

We identify two regimes depending on the value of 5 € |0, 1].
B Deterministic regime: g € [0, 1).
Define the following McKean-Vilasov SDE

AW} = h(W7, A5)dt,  with A} the distribution of W7 . (2)

Theorem 1. Let (W’g)keN be a sequence of i.i.d. RP-valued random variables with distribu-
tion uy € P9(RP) and set for any N € N, W%:N — {ng}fcvzl. Then, for any m € N* and
T > 0, there exists C,,, 7 > 0 such that for any 3 € |0,1) and N € N* with N > m

L:m,N L:m, (1—
E |supyepo.r) [IW; ™" = W™ P < G pN =07,

with (W, W) = (WP Wi)ym (W) solution of (1) starting from W™V,

and for any k € N*, Wf ™ solution of (2) starting from W’g :

. (Xf’*) rcN are i.i.d. (propagation of chaos result),

* the limiting McKean-Vlasov SDE is deterministic (no Brownian motion),

« same limiting dynamic for any g € [0,1) (first row, empirical measure 5 = .5, second
row, empirical measure 5 = .75)
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B Stochastic regime: 8 = 1.

AW} = h(W}, Xf)dt + (yS(W], Af)/2dBy . (3)

Theorem 2. For any m € N* and T > 0, there exists Cyr = 0 such that for any N € N*
with N > m

L.m,N L:m, _
E[Supte[O,T] W, —th*HQ] < CpprN~1,

with (W, W) = (oW Wi vm (WY solution of (1) starting from WY,

k

and for any k € N*, W, solution of (3) starting from W and Brownian motion (B} );>o.
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For 5 € |0,1), SGD converges towards a deterministic dynamics (same as GD).
For 8 = 1 the limiting dynamics remains stochastic.
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Each bar corresponds to the position of W}’N forlarge N € Nand 7" > 0 and
different random seeds but same initialization.

Connection with Wasserstein gradient flows

Links with Wasserstein gradient flow approaches [1].
B Deterministic regime: (X});>( satisfies the Partial Differential Equation (PDE)

ONF(w) = —div(h(-, X)NF)(w) |
This is the gradient flow associated with
Z*(p) =[xy € (Jgp F (@, )dp(w), y) dr(z,y)
B Stochastic regime: (A\});>( satisfies the PDE
OINF(w) = —div(h(-, ADADw) + (7/2) 3,5 05 (- AA) (w)
If 3> = 0 1d, this is the gradient flow associated with Z* + (~6/2)Ent, where
Ent(p) = — Jgp p(x)log(p(z))dz .

Hence large stepsizes correspond to an implicit regularization of the risk #*.
Better generalization properties (MNIST classification task)

Values N = 5000 | N = 5000 N = 10000 | N = 10000 N = 50000 N = 50000
of Nand 8| B=075| 8=10 | 8=075 | B=10 | 8=075 | B=1.0
Train acc. 100% 97.2% 100% 97.2% 100% 99%
Test acc. 55.5% 56.5% 56.0% 56.5% 56.7% 57.7%
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