QUANTITATIVE PROPAGATION OF CHAOS FOR SGD IN WIDE NEURAL NETWORKS

Valentin De Bortoli*, Alain Durmus†, Xavier Fontaine†, Umut Simsekli□∘,

*University of Oxford, †Université Paris-Saclay, □LTCI, Télécom Paris, ∘INRIA Paris

Motivation & Contribution

- Overparameterized neural networks (i.e. with a very large number of neurons N) are highly efficient in practice. This seems in contradiction with classical statistical learning theory (overfitting phenomenon).
- Our contribution: theoretical analysis of overparameterized neural networks. We identify a **propagation of chaos phenomenon** [4, 3] and investigate the limiting dynamics of the Stochastic Gradient Descent (SGD) when $N \to +\infty$.
- We identify two regimes (McKean-Vlasov processes) depending on the scaling of the stepsize in SGD with the number of neurons.
- In the second regime, large stepsizes act as an implicit regularizer.
- We draw connections with the Wasserstein gradient flow approach [1, 2].

Mean-field formulation

We aim at minimizing the structural risk

$$\mathscr{R}^{N}(w^{1:N}) = \int_{X \times Y} \ell\left(\frac{1}{N} \sum_{k=1}^{N} F(w^{k,N}, x), y\right) d\pi(x, y) + \frac{1}{N} \sum_{k=1}^{N} V(w^{k,N}),$$

where

- $w^{1:N} = \{w^{k,N}\}_{k=1}^N$ are the weights of the neural network,
- F is a feature function, e.g. $F(w,x) = \operatorname{sigmoid}(\langle w,x\rangle)$,
- ℓ is a loss function,
- V is a regularizer (optional),
- π is the distribution of the pair data/label.

The **SGD recursion**:

$$W_{n+1}^{1:N} = W_n^{1:N} - \gamma N^{\beta} \nabla \hat{\mathscr{R}}^N(W_n^{1:N}, X_n, Y_n) ,$$

with $\hat{\mathscr{R}}^N$ the **empirical risk**

$$\hat{\mathscr{R}}^{N}(w^{1:N}, x, y) = \ell\left(\frac{1}{N}\sum_{k=1}^{N} F(w^{k,N}, x), y\right) + \frac{1}{N}\sum_{k=1}^{N} V(w^{k,N}).$$

Let

$$h(w,\mu) = -\int_{\mathsf{X}\times\mathsf{Y}} \partial_1 \ell\left(\mu[F(\cdot,x)],y\right) \nabla_w F(w,x) \,\mathrm{d}\pi(x,y) - \nabla V(w) ,$$

$$\xi(w,\mu,x,y) = -h(w,\mu) - \partial_1 \ell(\mu[F(\cdot,x)],y) \nabla_w F(w,x) - \nabla V(w) .$$

Then the SGD recursion can be written in a mean-field formulation

$$W_{n+1}^{k,N} = W_n^{k,N} + \gamma N^{\beta-1} \left\{ h(W_n^{k,N}, \nu_n^N) + \xi(W_n^{k,N}, \nu_n^N, X_n, Y_n) \right\} ,$$

where ν_n^N is the **empirical measure** $\nu_n^N = (1/N) \sum_{k=1}^N \delta_{W_n^{k,N}}$.

We study the **continuous-time counterpart** of SGD given by the following Stochastic Differential Equation (provably close to the original process for small values of $\gamma N^{\beta-1}$)

$$d\mathbf{W}_t^{k,N} = h(\mathbf{W}_t^{k,N}, \boldsymbol{\nu}_t^N) dt + (\gamma N^{\beta-1})^{1/2} \Sigma^{1/2} (\mathbf{W}_t^{k,N}, \boldsymbol{\nu}_t^N) d\mathbf{B}_t^k,$$
(1)

where $\Sigma(w,\mu) = \int_{\mathsf{X}\times\mathsf{Y}} \xi(w,\mu,x,y) \xi(w,\mu,x,y)^{\top} \mathrm{d}\pi(x,y)$ and $\boldsymbol{\nu}_t^N$ is the empirical measure $\boldsymbol{\nu}_t^N = (1/N) \sum_{k=1}^N \delta_{\mathbf{W}_t^{k,N}}$.

Propagation of chaos

We identify **two regimes** depending on the value of $\beta \in [0, 1]$.

■ Deterministic regime: $\beta \in [0, 1)$.

Define the following McKean-Vlasov SDE

$$|\mathrm{d}\mathbf{W}_t^{\star} = h(\mathbf{W}_t^{\star}, \boldsymbol{\lambda}_t^{\star}) \mathrm{d}t \;, \qquad \text{with } \boldsymbol{\lambda}_t^{\star} \; \text{the distribution of } \mathbf{W}_t^{\star} \;. |$$

Theorem 1. Let $(\mathbf{W}_0^k)_{k\in\mathbb{N}}$ be a sequence of i.i.d. \mathbb{R}^p -valued random variables with distribution $\mu_0\in\mathscr{P}_2(\mathbb{R}^p)$ and set for any $N\in\mathbb{N}^\star$, $\mathbf{W}_0^{1:N}=\{\mathbf{W}_0^k\}_{k=1}^N$. Then, for any $m\in\mathbb{N}^\star$ and $T\geq 0$, there exists $C_{m,T}\geq 0$ such that for any $\beta\in[0,1)$ and $N\in\mathbb{N}^\star$ with $N\geq m$

$$\left| \mathbb{E} \left[\sup_{t \in [0,T]} \| \mathbf{W}_t^{1:m,N} - \mathbf{W}_t^{1:m,\star} \|^2 \right] \le C_{m,T} N^{-(1-\beta)}, \right|$$

with $(\mathbf{W}_t^{1:m,N}, \mathbf{W}_t^{1:m,\star}) = \{(\mathbf{W}_t^{k,N}, \mathbf{W}_t^{k,\star})\}_{k=1}^m$, $(\mathbf{W}_t^{1:N})$ solution of (1) starting from $\mathbf{W}_0^{1:N}$, and for any $k \in \mathbb{N}^{\star}$, $\mathbf{W}_t^{k,\star}$ solution of (2) starting from \mathbf{W}_0^k .

- $(\mathbf{X}_t^{k,\star})_{k\in\mathbb{N}}$ are i.i.d. (propagation of chaos result),
- the limiting McKean-Vlasov SDE is deterministic (no Brownian motion),
- same limiting dynamic for any $\beta \in [0,1)$ (first row, empirical measure $\beta = .5$, second row, empirical measure $\beta = .75$)

■ Stochastic regime: $\beta = 1$.

$$d\mathbf{W}_t^{\star} = h(\mathbf{W}_t^{\star}, \boldsymbol{\lambda}_t^{\star}) dt + (\gamma \Sigma(\mathbf{W}_t^{\star}, \boldsymbol{\lambda}_t^{\star}))^{1/2} d\mathbf{B}_t.$$
(3)

Theorem 2. For any $m \in \mathbb{N}^*$ and $T \geq 0$, there exists $C_{m,T} \geq 0$ such that for any $N \in \mathbb{N}^*$ with $N \geq m$

$$\mathbb{E}\left[\sup_{t\in[0,T]}\|\mathbf{W}_{t}^{1:m,N} - \mathbf{W}_{t}^{1:m,\star}\|^{2}\right] \leq C_{m,T}N^{-1},$$

with $(\mathbf{W}_t^{1:m,N}, \mathbf{W}_t^{1:m,\star}) = \{(\mathbf{W}_t^{k,N}, \mathbf{W}_t^{k,\star})\}_{k=1}^m$, $(\mathbf{W}_t^{1:N})$ solution of (1) starting from $\mathbf{W}_0^{1:N}$, and for any $k \in \mathbb{N}^{\star}$, $\mathbf{W}_t^{k,\star}$ solution of (3) starting from \mathbf{W}_0^k and Brownian motion $(\mathbf{B}_t^k)_{t>0}$.

Deterministic VS Stochastic

For $\beta \in [0,1)$, SGD converges towards a deterministic dynamics (same as GD). For $\beta = 1$ the limiting dynamics remains stochastic.

Each bar corresponds to the position of $W_T^{1,N}$ for large $N \in \mathbb{N}$ and $T \geq 0$ and different random seeds but same initialization.

Connection with Wasserstein gradient flows

Links with Wasserstein gradient flow approaches [1].

■ **Deterministic** regime: $(\lambda_t^{\star})_{t>0}$ satisfies the Partial Differential Equation (PDE)

$$\partial_t \boldsymbol{\lambda}_t^{\star}(w) = -\text{div}(h(\cdot, \boldsymbol{\lambda}_t^{\star}) \boldsymbol{\lambda}_t^{\star})(w),$$

This is the gradient flow associated with

$$\mathscr{R}^{\star}(\rho) = \int_{\mathsf{X}\times\mathsf{Y}} \ell\left(\int_{\mathbb{R}^p} F(\tilde{w}, x) d\rho(\tilde{w}), y\right) d\pi(x, y) ,$$

■ Stochastic regime: $(\lambda_t^{\star})_{t>0}$ satisfies the PDE

$$\partial_t \boldsymbol{\lambda}_t^{\star}(w) = -\text{div}(h(\cdot, \boldsymbol{\lambda}_t^{\star})\boldsymbol{\lambda}_t^{\star})(w) + (\gamma/2) \sum_{i,j} \partial_{i,j}(\Sigma_{i,j}(\cdot, \boldsymbol{\lambda}_t^{\star})\boldsymbol{\lambda}_t^{\star})(w)$$
.

If $\Sigma = \theta \operatorname{Id}$, this is the gradient flow associated with $\mathscr{R}^* + (\gamma \theta/2) \operatorname{Ent}$, where

$$\operatorname{Ent}(\rho) = -\int_{\mathbb{R}^p} \rho(x) \log(\rho(x)) dx.$$

Hence large stepsizes correspond to an **implicit regularization** of the risk \mathcal{R}^* . Better **generalization properties** (MNIST classification task)

Values	N = 5000	N = 5000	N = 10000	N = 10000	N = 50000	N = 50000
of N and eta	$\beta = 0.75$	$\beta = 1.0$	$\beta = 0.75$	$\beta = 1.0$	$\beta = 0.75$	$\beta = 1.0$
Train acc.	100%	97.2%	100%	97.2%	100%	99%
Test acc.	55.5%	56.5%	56.0%	56.5%	56.7%	57.7%

Acknowledgements

V. De Bortoli was partially supported by EPSRC grant EP/R034710/1. X. Fontaine was supported by grants from Région Ile-de-France. The contribution of U. Simsekli to this work is partly supported by the French National Research Agency (ANR) as a part of the FBIMATRIX (ANR-16-CE23-0014) project.

References

References

- [1] L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized models using optimal transport. In *Neurips*, 2018.
- [2] S. Mei, A. Montanari, and P. Nguyen. A mean field view of the landscape of two-layer neural networks. *PNAS*, 2018.
- [3] J. Sirignano and K. Spiliopoulos. Mean field analysis of deep neural networks. arXiv preprint arXiv:1903.04440, 2019.
- [4] A. Sznitman. Topics in propagation of chaos. In *Ecole d'été de probabilités de Saint-Flour XIX—1989*. 1991.